Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312125957> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4312125957 endingPage "770" @default.
- W4312125957 startingPage "757" @default.
- W4312125957 abstract "Breast cancer prediction is essential for preventing and treating cancer. In this research, a novel breast cancer prediction model is introduced. In addition, this research aims to provide a range-based cancer score instead of binary classification results (yes or no). The Breast Cancer Surveillance Consortium dataset (BCSC) dataset is used and modified by applying a proposed probabilistic model to achieve the range-based cancer score. The suggested model analyses a sub dataset of the whole BCSC dataset, including 67632 records and 13 risk factors. Three types of statistics are acquired (general cancer and non-cancer probabilities, previous medical knowledge, and the likelihood of each risk factor given all prediction classes). The model also uses the weighting methodology to achieve the best fusion of the BCSC's risk factors. The computation of the final prediction score is done using the post probability of the weighted combination of risk factors and the three statistics acquired from the probabilistic model. This final prediction is added to the BCSC dataset, and the new version of the BCSC dataset is used to train an ensemble model consisting of 30 learners. The experiments are applied using the sub and the whole datasets (including 317880 medical records). The results indicate that the new range-based model is accurate and robust with an accuracy of 91.33%, a false rejection rate of 1.12%, and an AUC of 0.9795. The new version of the BCSC dataset can be used for further research and analysis." @default.
- W4312125957 created "2023-01-04" @default.
- W4312125957 creator A5045392486 @default.
- W4312125957 creator A5074666293 @default.
- W4312125957 date "2022-12-12" @default.
- W4312125957 modified "2023-10-10" @default.
- W4312125957 title "A New Range-based Breast Cancer Prediction Model Using the Bayes' Theorem and Ensemble Learning" @default.
- W4312125957 doi "https://doi.org/10.5755/j01.itc.51.4.31347" @default.
- W4312125957 hasPublicationYear "2022" @default.
- W4312125957 type Work @default.
- W4312125957 citedByCount "2" @default.
- W4312125957 crossrefType "journal-article" @default.
- W4312125957 hasAuthorship W4312125957A5045392486 @default.
- W4312125957 hasAuthorship W4312125957A5074666293 @default.
- W4312125957 hasBestOaLocation W43121259571 @default.
- W4312125957 hasConcept C105795698 @default.
- W4312125957 hasConcept C107673813 @default.
- W4312125957 hasConcept C114289077 @default.
- W4312125957 hasConcept C119857082 @default.
- W4312125957 hasConcept C121608353 @default.
- W4312125957 hasConcept C126322002 @default.
- W4312125957 hasConcept C126838900 @default.
- W4312125957 hasConcept C127413603 @default.
- W4312125957 hasConcept C146978453 @default.
- W4312125957 hasConcept C154945302 @default.
- W4312125957 hasConcept C183115368 @default.
- W4312125957 hasConcept C204323151 @default.
- W4312125957 hasConcept C207201462 @default.
- W4312125957 hasConcept C33923547 @default.
- W4312125957 hasConcept C41008148 @default.
- W4312125957 hasConcept C49937458 @default.
- W4312125957 hasConcept C530470458 @default.
- W4312125957 hasConcept C71924100 @default.
- W4312125957 hasConceptScore W4312125957C105795698 @default.
- W4312125957 hasConceptScore W4312125957C107673813 @default.
- W4312125957 hasConceptScore W4312125957C114289077 @default.
- W4312125957 hasConceptScore W4312125957C119857082 @default.
- W4312125957 hasConceptScore W4312125957C121608353 @default.
- W4312125957 hasConceptScore W4312125957C126322002 @default.
- W4312125957 hasConceptScore W4312125957C126838900 @default.
- W4312125957 hasConceptScore W4312125957C127413603 @default.
- W4312125957 hasConceptScore W4312125957C146978453 @default.
- W4312125957 hasConceptScore W4312125957C154945302 @default.
- W4312125957 hasConceptScore W4312125957C183115368 @default.
- W4312125957 hasConceptScore W4312125957C204323151 @default.
- W4312125957 hasConceptScore W4312125957C207201462 @default.
- W4312125957 hasConceptScore W4312125957C33923547 @default.
- W4312125957 hasConceptScore W4312125957C41008148 @default.
- W4312125957 hasConceptScore W4312125957C49937458 @default.
- W4312125957 hasConceptScore W4312125957C530470458 @default.
- W4312125957 hasConceptScore W4312125957C71924100 @default.
- W4312125957 hasIssue "4" @default.
- W4312125957 hasLocation W43121259571 @default.
- W4312125957 hasOpenAccess W4312125957 @default.
- W4312125957 hasPrimaryLocation W43121259571 @default.
- W4312125957 hasRelatedWork W2013718921 @default.
- W4312125957 hasRelatedWork W2046384965 @default.
- W4312125957 hasRelatedWork W2109018345 @default.
- W4312125957 hasRelatedWork W2148813253 @default.
- W4312125957 hasRelatedWork W2507458234 @default.
- W4312125957 hasRelatedWork W2569078948 @default.
- W4312125957 hasRelatedWork W3088213682 @default.
- W4312125957 hasRelatedWork W3171225007 @default.
- W4312125957 hasRelatedWork W4255862392 @default.
- W4312125957 hasRelatedWork W4287662420 @default.
- W4312125957 hasVolume "51" @default.
- W4312125957 isParatext "false" @default.
- W4312125957 isRetracted "false" @default.
- W4312125957 workType "article" @default.