Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312126049> ?p ?o ?g. }
- W4312126049 endingPage "15601" @default.
- W4312126049 startingPage "15579" @default.
- W4312126049 abstract "Abstract. The Arctic is very susceptible to climate change and thus is warming much faster than the rest of the world. Clouds influence terrestrial and solar radiative fluxes and thereby impact the amplified Arctic warming. The partitioning of thermodynamic phases (i.e., ice crystals and water droplets) within mixed-phase clouds (MPCs) especially influences their radiative properties. However, the processes responsible for ice crystal formation remain only partially characterized. In particular, so-called secondary ice production (SIP) processes, which create supplementary ice crystals from primary ice crystals and the environmental conditions that they occur in, are poorly understood. The microphysical properties of Arctic MPCs were measured during the Ny-Ålesund AeroSol Cloud ExperimENT (NASCENT) campaign to obtain a better understanding of the atmospheric conditions favorable for the occurrence of SIP processes. To this aim, the in situ cloud microphysical properties retrieved by a holographic cloud imager mounted on a tethered balloon system were complemented by ground-based remote sensing and ice-nucleating particle measurements. During the 6 d investigated in this study, SIP occurred during about 40 % of the in-cloud measurements, and high SIP events with number concentrations larger than 10 L−1 of small pristine ice crystals occurred in 4 % of the in-cloud measurements. This demonstrates the role of SIP for Arctic MPCs. The highest concentrations of small pristine ice crystals were produced at temperatures between −5 and −3 ∘C and were related to the occurrence of supercooled large droplets freezing upon collision with ice crystals. This suggests that a large fraction of ice crystals in Arctic MPCs are produced via the droplet-shattering mechanism. From evaluating the ice crystal images, we could identify ice–ice collision as a second SIP mechanism that dominated when fragile ice crystals were observed. Moreover, SIP occurred over a large temperature range and was observed in up to 80 % of the measurements down to −24 ∘C due to the occurrence of ice–ice collisions. This emphasizes the importance of SIP at temperatures below −8 ∘C, which are currently not accounted for in most numerical weather models. Although ice-nucleating particles may be necessary for the initial freezing of water droplets, the ice crystal number concentration is frequently determined by secondary production mechanisms." @default.
- W4312126049 created "2023-01-04" @default.
- W4312126049 creator A5015244650 @default.
- W4312126049 creator A5023041499 @default.
- W4312126049 creator A5039171013 @default.
- W4312126049 creator A5041284859 @default.
- W4312126049 creator A5043497487 @default.
- W4312126049 creator A5049454696 @default.
- W4312126049 creator A5057502580 @default.
- W4312126049 creator A5062311184 @default.
- W4312126049 creator A5077767913 @default.
- W4312126049 creator A5084015323 @default.
- W4312126049 date "2022-12-12" @default.
- W4312126049 modified "2023-09-30" @default.
- W4312126049 title "Conditions favorable for secondary ice production in Arctic mixed-phase clouds" @default.
- W4312126049 cites W1974584236 @default.
- W4312126049 cites W1974930472 @default.
- W4312126049 cites W1976289391 @default.
- W4312126049 cites W1977935900 @default.
- W4312126049 cites W1981052895 @default.
- W4312126049 cites W1984031366 @default.
- W4312126049 cites W1986687589 @default.
- W4312126049 cites W2002591895 @default.
- W4312126049 cites W2002898709 @default.
- W4312126049 cites W2028119870 @default.
- W4312126049 cites W2033352751 @default.
- W4312126049 cites W2042567743 @default.
- W4312126049 cites W2048133120 @default.
- W4312126049 cites W2051971694 @default.
- W4312126049 cites W2054723735 @default.
- W4312126049 cites W2057308198 @default.
- W4312126049 cites W2074020020 @default.
- W4312126049 cites W2083541723 @default.
- W4312126049 cites W2092849781 @default.
- W4312126049 cites W2101977619 @default.
- W4312126049 cites W2123939692 @default.
- W4312126049 cites W2143117507 @default.
- W4312126049 cites W2144896826 @default.
- W4312126049 cites W2147485664 @default.
- W4312126049 cites W2159899003 @default.
- W4312126049 cites W2165204238 @default.
- W4312126049 cites W2165849822 @default.
- W4312126049 cites W2173346590 @default.
- W4312126049 cites W2463848082 @default.
- W4312126049 cites W2481256961 @default.
- W4312126049 cites W2559556773 @default.
- W4312126049 cites W2577369584 @default.
- W4312126049 cites W2582759335 @default.
- W4312126049 cites W2607344357 @default.
- W4312126049 cites W2609890431 @default.
- W4312126049 cites W2682860580 @default.
- W4312126049 cites W2746585850 @default.
- W4312126049 cites W2763419683 @default.
- W4312126049 cites W2799805314 @default.
- W4312126049 cites W2808792444 @default.
- W4312126049 cites W2886199511 @default.
- W4312126049 cites W2912097372 @default.
- W4312126049 cites W2912229113 @default.
- W4312126049 cites W2916830474 @default.
- W4312126049 cites W2946724251 @default.
- W4312126049 cites W2956978860 @default.
- W4312126049 cites W2960737663 @default.
- W4312126049 cites W2963651119 @default.
- W4312126049 cites W2965141591 @default.
- W4312126049 cites W2974575738 @default.
- W4312126049 cites W3036117470 @default.
- W4312126049 cites W3048406720 @default.
- W4312126049 cites W3092032352 @default.
- W4312126049 cites W3093139759 @default.
- W4312126049 cites W3098339242 @default.
- W4312126049 cites W3130960458 @default.
- W4312126049 cites W3136307833 @default.
- W4312126049 cites W3144449084 @default.
- W4312126049 cites W3202521227 @default.
- W4312126049 cites W3203817573 @default.
- W4312126049 cites W4221012310 @default.
- W4312126049 cites W4225420277 @default.
- W4312126049 cites W4226457127 @default.
- W4312126049 cites W4231251942 @default.
- W4312126049 cites W4248066542 @default.
- W4312126049 cites W4285093088 @default.
- W4312126049 cites W4286009114 @default.
- W4312126049 cites W4289334181 @default.
- W4312126049 cites W4292451682 @default.
- W4312126049 cites W4309181973 @default.
- W4312126049 doi "https://doi.org/10.5194/acp-22-15579-2022" @default.
- W4312126049 hasPublicationYear "2022" @default.
- W4312126049 type Work @default.
- W4312126049 citedByCount "4" @default.
- W4312126049 countsByYear W43121260492023 @default.
- W4312126049 crossrefType "journal-article" @default.
- W4312126049 hasAuthorship W4312126049A5015244650 @default.
- W4312126049 hasAuthorship W4312126049A5023041499 @default.
- W4312126049 hasAuthorship W4312126049A5039171013 @default.
- W4312126049 hasAuthorship W4312126049A5041284859 @default.
- W4312126049 hasAuthorship W4312126049A5043497487 @default.
- W4312126049 hasAuthorship W4312126049A5049454696 @default.
- W4312126049 hasAuthorship W4312126049A5057502580 @default.