Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312127557> ?p ?o ?g. }
- W4312127557 endingPage "9684" @default.
- W4312127557 startingPage "9684" @default.
- W4312127557 abstract "Dynamic data (including environmental, traffic, and sensor data) were recently recognized as an important part of Open Government Data (OGD). Although these data are of vital importance in the development of data intelligence applications, such as business applications that exploit traffic data to predict traffic demand, they are prone to data quality errors produced by, e.g., failures of sensors and network faults. This paper explores the quality of Dynamic Open Government Data. To that end, a single case is studied using traffic data from the official Greek OGD portal. The portal uses an Application Programming Interface (API), which is essential for effective dynamic data dissemination. Our research approach includes assessing data quality using statistical and machine learning methods to detect missing values and anomalies. Traffic flow-speed correlation analysis, seasonal-trend decomposition, and unsupervised isolation Forest (iForest) are used to detect anomalies. iForest anomalies are classified as sensor faults and unusual traffic conditions. The iForest algorithm is also trained on additional features, and the model is explained using explainable artificial intelligence. There are 20.16% missing traffic observations, and 50% of the sensors have 15.5% to 33.43% missing values. The average percent of anomalies per sensor is 71.1%, with only a few sensors having less than 10% anomalies. Seasonal-trend decomposition detected 12.6% anomalies in the data of these sensors, and iForest 11.6%, with very few overlaps. To the authors’ knowledge, this is the first time a study has explored the quality of dynamic OGD." @default.
- W4312127557 created "2023-01-04" @default.
- W4312127557 creator A5049568965 @default.
- W4312127557 creator A5071366959 @default.
- W4312127557 creator A5075572639 @default.
- W4312127557 creator A5086661452 @default.
- W4312127557 date "2022-12-10" @default.
- W4312127557 modified "2023-10-14" @default.
- W4312127557 title "Exploring the Quality of Dynamic Open Government Data Using Statistical and Machine Learning Methods" @default.
- W4312127557 cites W1970978220 @default.
- W4312127557 cites W1981566181 @default.
- W4312127557 cites W2060373054 @default.
- W4312127557 cites W2068695859 @default.
- W4312127557 cites W2114609788 @default.
- W4312127557 cites W2122646361 @default.
- W4312127557 cites W2171527181 @default.
- W4312127557 cites W2186910770 @default.
- W4312127557 cites W2206400781 @default.
- W4312127557 cites W2278930469 @default.
- W4312127557 cites W2282821441 @default.
- W4312127557 cites W2291040097 @default.
- W4312127557 cites W2296719434 @default.
- W4312127557 cites W2328831662 @default.
- W4312127557 cites W2475179357 @default.
- W4312127557 cites W2490769265 @default.
- W4312127557 cites W2571183852 @default.
- W4312127557 cites W2789806937 @default.
- W4312127557 cites W2804199333 @default.
- W4312127557 cites W2906570161 @default.
- W4312127557 cites W2914091078 @default.
- W4312127557 cites W2945976633 @default.
- W4312127557 cites W2976852454 @default.
- W4312127557 cites W2996705655 @default.
- W4312127557 cites W3013886221 @default.
- W4312127557 cites W3080157892 @default.
- W4312127557 cites W3083860682 @default.
- W4312127557 cites W3110064839 @default.
- W4312127557 cites W3123909522 @default.
- W4312127557 cites W3123965466 @default.
- W4312127557 cites W3128475364 @default.
- W4312127557 cites W3147649165 @default.
- W4312127557 cites W3163701409 @default.
- W4312127557 cites W3167769983 @default.
- W4312127557 cites W3173826379 @default.
- W4312127557 cites W3188748761 @default.
- W4312127557 cites W3189286258 @default.
- W4312127557 cites W3191161603 @default.
- W4312127557 cites W3197381872 @default.
- W4312127557 cites W3209566330 @default.
- W4312127557 cites W4223646967 @default.
- W4312127557 cites W4245050711 @default.
- W4312127557 cites W4281250833 @default.
- W4312127557 cites W4282984446 @default.
- W4312127557 cites W4293548161 @default.
- W4312127557 cites W4293588736 @default.
- W4312127557 cites W4294169499 @default.
- W4312127557 cites W4306250693 @default.
- W4312127557 cites W4307283367 @default.
- W4312127557 cites W4309730108 @default.
- W4312127557 cites W560871064 @default.
- W4312127557 doi "https://doi.org/10.3390/s22249684" @default.
- W4312127557 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36560054" @default.
- W4312127557 hasPublicationYear "2022" @default.
- W4312127557 type Work @default.
- W4312127557 citedByCount "5" @default.
- W4312127557 countsByYear W43121275572023 @default.
- W4312127557 crossrefType "journal-article" @default.
- W4312127557 hasAuthorship W4312127557A5049568965 @default.
- W4312127557 hasAuthorship W4312127557A5071366959 @default.
- W4312127557 hasAuthorship W4312127557A5075572639 @default.
- W4312127557 hasAuthorship W4312127557A5086661452 @default.
- W4312127557 hasBestOaLocation W43121275571 @default.
- W4312127557 hasConcept C119857082 @default.
- W4312127557 hasConcept C124101348 @default.
- W4312127557 hasConcept C127413603 @default.
- W4312127557 hasConcept C136764020 @default.
- W4312127557 hasConcept C165696696 @default.
- W4312127557 hasConcept C176217482 @default.
- W4312127557 hasConcept C197298091 @default.
- W4312127557 hasConcept C21547014 @default.
- W4312127557 hasConcept C24756922 @default.
- W4312127557 hasConcept C2780535194 @default.
- W4312127557 hasConcept C38652104 @default.
- W4312127557 hasConcept C41008148 @default.
- W4312127557 hasConcept C77088390 @default.
- W4312127557 hasConcept C92446256 @default.
- W4312127557 hasConcept C9357733 @default.
- W4312127557 hasConceptScore W4312127557C119857082 @default.
- W4312127557 hasConceptScore W4312127557C124101348 @default.
- W4312127557 hasConceptScore W4312127557C127413603 @default.
- W4312127557 hasConceptScore W4312127557C136764020 @default.
- W4312127557 hasConceptScore W4312127557C165696696 @default.
- W4312127557 hasConceptScore W4312127557C176217482 @default.
- W4312127557 hasConceptScore W4312127557C197298091 @default.
- W4312127557 hasConceptScore W4312127557C21547014 @default.
- W4312127557 hasConceptScore W4312127557C24756922 @default.
- W4312127557 hasConceptScore W4312127557C2780535194 @default.
- W4312127557 hasConceptScore W4312127557C38652104 @default.