Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312127612> ?p ?o ?g. }
- W4312127612 endingPage "7334" @default.
- W4312127612 startingPage "7334" @default.
- W4312127612 abstract "Radiomics investigates the predictive role of quantitative parameters calculated from radiological images. In oncology, tumour segmentation constitutes a crucial step of the radiomic workflow. Manual segmentation is time-consuming and prone to inter-observer variability. In this study, a state-of-the-art deep-learning network for automatic segmentation (nnU-Net) was applied to computed tomography images of lung tumour patients, and its impact on the performance of survival radiomic models was assessed. In total, 899 patients were included, from two proprietary and one public datasets. Different network architectures (2D, 3D) were trained and tested on different combinations of the datasets. Automatic segmentations were compared to reference manual segmentations performed by physicians using the DICE similarity coefficient. Subsequently, the accuracy of radiomic models for survival classification based on either manual or automatic segmentations were compared, considering both hand-crafted and deep-learning features. The best agreement between automatic and manual contours (DICE = 0.78 ± 0.12) was achieved averaging 2D and 3D predictions and applying customised post-processing. The accuracy of the survival classifier (ranging between 0.65 and 0.78) was not statistically different when using manual versus automatic contours, both with hand-crafted and deep features. These results support the promising role nnU-Net can play in automatic segmentation, accelerating the radiomic workflow without impairing the models' accuracy. Further investigations on different clinical endpoints and populations are encouraged to confirm and generalise these findings." @default.
- W4312127612 created "2023-01-04" @default.
- W4312127612 creator A5001551311 @default.
- W4312127612 creator A5003664573 @default.
- W4312127612 creator A5003932609 @default.
- W4312127612 creator A5011316927 @default.
- W4312127612 creator A5023444527 @default.
- W4312127612 creator A5025628907 @default.
- W4312127612 creator A5027278814 @default.
- W4312127612 creator A5034457392 @default.
- W4312127612 creator A5035069427 @default.
- W4312127612 creator A5035376190 @default.
- W4312127612 creator A5043819658 @default.
- W4312127612 creator A5048679774 @default.
- W4312127612 creator A5049297070 @default.
- W4312127612 creator A5053972376 @default.
- W4312127612 creator A5061373901 @default.
- W4312127612 creator A5064849492 @default.
- W4312127612 creator A5083651238 @default.
- W4312127612 creator A5085306043 @default.
- W4312127612 creator A5088168853 @default.
- W4312127612 creator A5090405615 @default.
- W4312127612 date "2022-12-09" @default.
- W4312127612 modified "2023-10-15" @default.
- W4312127612 title "Application of nnU-Net for Automatic Segmentation of Lung Lesions on CT Images and Its Implication for Radiomic Models" @default.
- W4312127612 cites W1986649315 @default.
- W4312127612 cites W2026616100 @default.
- W4312127612 cites W2035107885 @default.
- W4312127612 cites W2052507258 @default.
- W4312127612 cites W2083927153 @default.
- W4312127612 cites W2103004421 @default.
- W4312127612 cites W2118386984 @default.
- W4312127612 cites W2126446504 @default.
- W4312127612 cites W2163351155 @default.
- W4312127612 cites W2174661749 @default.
- W4312127612 cites W2194775991 @default.
- W4312127612 cites W2228221433 @default.
- W4312127612 cites W2312400860 @default.
- W4312127612 cites W2327037637 @default.
- W4312127612 cites W2461805626 @default.
- W4312127612 cites W2606926876 @default.
- W4312127612 cites W2624211040 @default.
- W4312127612 cites W2760946358 @default.
- W4312127612 cites W2767128594 @default.
- W4312127612 cites W2769556951 @default.
- W4312127612 cites W2789628421 @default.
- W4312127612 cites W2791459212 @default.
- W4312127612 cites W2803760365 @default.
- W4312127612 cites W2883636763 @default.
- W4312127612 cites W2889615630 @default.
- W4312127612 cites W2895365761 @default.
- W4312127612 cites W2897821359 @default.
- W4312127612 cites W2903150666 @default.
- W4312127612 cites W2907772920 @default.
- W4312127612 cites W2940487144 @default.
- W4312127612 cites W2954296981 @default.
- W4312127612 cites W2960473173 @default.
- W4312127612 cites W3001152983 @default.
- W4312127612 cites W3005023514 @default.
- W4312127612 cites W3009292867 @default.
- W4312127612 cites W3021898219 @default.
- W4312127612 cites W3029176830 @default.
- W4312127612 cites W3030951792 @default.
- W4312127612 cites W3032938107 @default.
- W4312127612 cites W3046015102 @default.
- W4312127612 cites W3096947210 @default.
- W4312127612 cites W3106266685 @default.
- W4312127612 cites W3112701542 @default.
- W4312127612 cites W3128646645 @default.
- W4312127612 cites W3134678567 @default.
- W4312127612 cites W3135096391 @default.
- W4312127612 cites W3138961261 @default.
- W4312127612 cites W3154931192 @default.
- W4312127612 cites W3159081720 @default.
- W4312127612 cites W3178319406 @default.
- W4312127612 cites W3182479095 @default.
- W4312127612 cites W3187137693 @default.
- W4312127612 cites W3214383549 @default.
- W4312127612 cites W4210992155 @default.
- W4312127612 cites W4213429812 @default.
- W4312127612 cites W4220978916 @default.
- W4312127612 cites W4224251960 @default.
- W4312127612 cites W4233359448 @default.
- W4312127612 doi "https://doi.org/10.3390/jcm11247334" @default.
- W4312127612 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36555950" @default.
- W4312127612 hasPublicationYear "2022" @default.
- W4312127612 type Work @default.
- W4312127612 citedByCount "3" @default.
- W4312127612 countsByYear W43121276122023 @default.
- W4312127612 crossrefType "journal-article" @default.
- W4312127612 hasAuthorship W4312127612A5001551311 @default.
- W4312127612 hasAuthorship W4312127612A5003664573 @default.
- W4312127612 hasAuthorship W4312127612A5003932609 @default.
- W4312127612 hasAuthorship W4312127612A5011316927 @default.
- W4312127612 hasAuthorship W4312127612A5023444527 @default.
- W4312127612 hasAuthorship W4312127612A5025628907 @default.
- W4312127612 hasAuthorship W4312127612A5027278814 @default.
- W4312127612 hasAuthorship W4312127612A5034457392 @default.