Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312133733> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4312133733 endingPage "240" @default.
- W4312133733 startingPage "233" @default.
- W4312133733 abstract "Digital image analysis is an effective, least time-consuming, minimal human interventional, optimal resource-oriented technique used in the last few decades. Computerized image analysis has been of great aid to young scientists and researchers in setting a benchmark in various areas. The major applications of Iron Oxide Nanoparticles are such as; curing cancer, drug delivery systems, antifungal activities, imaging, and cellular labeling. In this study, the Transmission Electron Microscopy(TEM) images (a, b, c, d, and e) of Iron Oxide Nanoparticles are synthesized using chemical and biological methods at 300 ℃ and 500 ℃ temperature. Images a, b, c, and d are prepared using chemical methods and image e is prepared by biological method with Iron Nitrate and Rudanti fruit plant extract. The motive behind the present work is that the traditional characterization techniques are time-consuming and are not economically cost-effective. Hence, an effort is made to automate a tool that can determine the size of TEM images of Iron Oxide Nanoparticles. The Gaussian Mixture Model - Expectancy Maximization (GMM-EM) segmentation technique is applied and diverse features, namely; size (area), perimeter, major axis, minor axis, porosity, circularity, interparticle distance, and average area are computed from TEM images of Iron Oxide Nanoparticles. It is observed that the area-wise percentage of images a, b, c, and d is 43.39%, 62.06%, 57.14%, and 70.00%, respectively, which are synthesized by using the chemical method and the area-wise percentage of image e is 64.28%, by using the biological method. The biological synthesization method is universally accepted as it uses no toxic chemicals, is cost-effective, and is environmentally friendly. The proposed results are analyzed and compared with manual results obtained from the chemical experts and are found to be a good performance." @default.
- W4312133733 created "2023-01-04" @default.
- W4312133733 creator A5007490606 @default.
- W4312133733 creator A5015606984 @default.
- W4312133733 creator A5027337226 @default.
- W4312133733 creator A5034695381 @default.
- W4312133733 date "2022-12-13" @default.
- W4312133733 modified "2023-09-27" @default.
- W4312133733 title "Iron Oxide Nanoparticle Image Analysis Using Machine Learning Algorithms" @default.
- W4312133733 cites W1981533112 @default.
- W4312133733 cites W2049188645 @default.
- W4312133733 cites W2085779433 @default.
- W4312133733 cites W2095163916 @default.
- W4312133733 cites W2318462271 @default.
- W4312133733 cites W2499776669 @default.
- W4312133733 cites W2513417361 @default.
- W4312133733 cites W2583225556 @default.
- W4312133733 cites W2957926062 @default.
- W4312133733 cites W3034816565 @default.
- W4312133733 cites W3092945927 @default.
- W4312133733 cites W3185776322 @default.
- W4312133733 cites W4244042276 @default.
- W4312133733 cites W4254871336 @default.
- W4312133733 doi "https://doi.org/10.1007/978-981-19-5482-5_20" @default.
- W4312133733 hasPublicationYear "2022" @default.
- W4312133733 type Work @default.
- W4312133733 citedByCount "0" @default.
- W4312133733 crossrefType "book-chapter" @default.
- W4312133733 hasAuthorship W4312133733A5007490606 @default.
- W4312133733 hasAuthorship W4312133733A5015606984 @default.
- W4312133733 hasAuthorship W4312133733A5027337226 @default.
- W4312133733 hasAuthorship W4312133733A5034695381 @default.
- W4312133733 hasConcept C154945302 @default.
- W4312133733 hasConcept C155672457 @default.
- W4312133733 hasConcept C171250308 @default.
- W4312133733 hasConcept C192562407 @default.
- W4312133733 hasConcept C2778889443 @default.
- W4312133733 hasConcept C41008148 @default.
- W4312133733 hasConceptScore W4312133733C154945302 @default.
- W4312133733 hasConceptScore W4312133733C155672457 @default.
- W4312133733 hasConceptScore W4312133733C171250308 @default.
- W4312133733 hasConceptScore W4312133733C192562407 @default.
- W4312133733 hasConceptScore W4312133733C2778889443 @default.
- W4312133733 hasConceptScore W4312133733C41008148 @default.
- W4312133733 hasLocation W43121337331 @default.
- W4312133733 hasOpenAccess W4312133733 @default.
- W4312133733 hasPrimaryLocation W43121337331 @default.
- W4312133733 hasRelatedWork W2035424584 @default.
- W4312133733 hasRelatedWork W2072895628 @default.
- W4312133733 hasRelatedWork W2161912089 @default.
- W4312133733 hasRelatedWork W2315737460 @default.
- W4312133733 hasRelatedWork W2609207574 @default.
- W4312133733 hasRelatedWork W2768412175 @default.
- W4312133733 hasRelatedWork W2870135026 @default.
- W4312133733 hasRelatedWork W2923567438 @default.
- W4312133733 hasRelatedWork W3133521312 @default.
- W4312133733 hasRelatedWork W4224024957 @default.
- W4312133733 isParatext "false" @default.
- W4312133733 isRetracted "false" @default.
- W4312133733 workType "book-chapter" @default.