Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312139969> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4312139969 endingPage "9397" @default.
- W4312139969 startingPage "9397" @default.
- W4312139969 abstract "The microgrid (MG) is a popular concept to handle the high penetration of distributed energy resources, such as renewable and energy storage systems, into electric grids. However, the integration of inverter-interfaced distributed generation units (IIDGs) imposes control and protection challenges. Fault identification, classification and isolation are major concerns with IIDGs-based active MGs where IIDGs reveal arbitrary impedance and thus different fault characteristics. Moreover, bidirectional complex power flow creates extra difficulties for fault analysis. This makes the conventional methods inefficient, and a new paradigm in protection schemes is needed for IIDGs-dominated MGs. In this paper, a machine-learning (ML)-based protection technique is developed for IIDG-based AC MGs by extracting unique and novel features for detecting and classifying symmetrical and unsymmetrical faults. Different signals, namely, 400 samples, for wide variations in operating conditions of an MG are obtained through electromagnetic transient simulations in DIgSILENT PowerFactory. After retrieving and pre-processing the signals, 10 different feature extraction techniques, including new peaks metric and max factor, are applied to obtain 100 features. They are ranked using the Kruskal–Wallis H-Test to identify the best performing features, apart from estimating predictor importance for ensemble ML classification. The top 18 features are used as input to train 35 classification learners. Random Forest (RF) outperformed all other ML classifiers for fault detection and fault type classification with faulted phase identification. Compared to previous methods, the results show better performance of the proposed method." @default.
- W4312139969 created "2023-01-04" @default.
- W4312139969 creator A5032686951 @default.
- W4312139969 creator A5043188694 @default.
- W4312139969 creator A5074014668 @default.
- W4312139969 creator A5078809681 @default.
- W4312139969 date "2022-12-12" @default.
- W4312139969 modified "2023-09-30" @default.
- W4312139969 title "Machine Learning Based Protection Scheme for Low Voltage AC Microgrids" @default.
- W4312139969 cites W2062931349 @default.
- W4312139969 cites W2111838077 @default.
- W4312139969 cites W2142816048 @default.
- W4312139969 cites W2148672603 @default.
- W4312139969 cites W2289117919 @default.
- W4312139969 cites W2327849618 @default.
- W4312139969 cites W2343847222 @default.
- W4312139969 cites W2498137302 @default.
- W4312139969 cites W2591489243 @default.
- W4312139969 cites W2735569547 @default.
- W4312139969 cites W2766180262 @default.
- W4312139969 cites W2769267378 @default.
- W4312139969 cites W2787894218 @default.
- W4312139969 cites W2911964244 @default.
- W4312139969 cites W2936603121 @default.
- W4312139969 cites W3044853528 @default.
- W4312139969 cites W3123380226 @default.
- W4312139969 cites W3139166566 @default.
- W4312139969 cites W3156892986 @default.
- W4312139969 cites W3171793402 @default.
- W4312139969 cites W3192640303 @default.
- W4312139969 cites W3196578095 @default.
- W4312139969 cites W3215167555 @default.
- W4312139969 cites W4212883601 @default.
- W4312139969 cites W4240561213 @default.
- W4312139969 cites W4292566458 @default.
- W4312139969 cites W4297514723 @default.
- W4312139969 doi "https://doi.org/10.3390/en15249397" @default.
- W4312139969 hasPublicationYear "2022" @default.
- W4312139969 type Work @default.
- W4312139969 citedByCount "4" @default.
- W4312139969 countsByYear W43121399692022 @default.
- W4312139969 countsByYear W43121399692023 @default.
- W4312139969 crossrefType "journal-article" @default.
- W4312139969 hasAuthorship W4312139969A5032686951 @default.
- W4312139969 hasAuthorship W4312139969A5043188694 @default.
- W4312139969 hasAuthorship W4312139969A5074014668 @default.
- W4312139969 hasAuthorship W4312139969A5078809681 @default.
- W4312139969 hasBestOaLocation W43121399691 @default.
- W4312139969 hasConcept C111919701 @default.
- W4312139969 hasConcept C119599485 @default.
- W4312139969 hasConcept C127313418 @default.
- W4312139969 hasConcept C127413603 @default.
- W4312139969 hasConcept C152745839 @default.
- W4312139969 hasConcept C154945302 @default.
- W4312139969 hasConcept C165205528 @default.
- W4312139969 hasConcept C169258074 @default.
- W4312139969 hasConcept C172707124 @default.
- W4312139969 hasConcept C175551986 @default.
- W4312139969 hasConcept C188573790 @default.
- W4312139969 hasConcept C2775924081 @default.
- W4312139969 hasConcept C2776784348 @default.
- W4312139969 hasConcept C2780799671 @default.
- W4312139969 hasConcept C41008148 @default.
- W4312139969 hasConcept C544738498 @default.
- W4312139969 hasConceptScore W4312139969C111919701 @default.
- W4312139969 hasConceptScore W4312139969C119599485 @default.
- W4312139969 hasConceptScore W4312139969C127313418 @default.
- W4312139969 hasConceptScore W4312139969C127413603 @default.
- W4312139969 hasConceptScore W4312139969C152745839 @default.
- W4312139969 hasConceptScore W4312139969C154945302 @default.
- W4312139969 hasConceptScore W4312139969C165205528 @default.
- W4312139969 hasConceptScore W4312139969C169258074 @default.
- W4312139969 hasConceptScore W4312139969C172707124 @default.
- W4312139969 hasConceptScore W4312139969C175551986 @default.
- W4312139969 hasConceptScore W4312139969C188573790 @default.
- W4312139969 hasConceptScore W4312139969C2775924081 @default.
- W4312139969 hasConceptScore W4312139969C2776784348 @default.
- W4312139969 hasConceptScore W4312139969C2780799671 @default.
- W4312139969 hasConceptScore W4312139969C41008148 @default.
- W4312139969 hasConceptScore W4312139969C544738498 @default.
- W4312139969 hasIssue "24" @default.
- W4312139969 hasLocation W43121399691 @default.
- W4312139969 hasOpenAccess W4312139969 @default.
- W4312139969 hasPrimaryLocation W43121399691 @default.
- W4312139969 hasRelatedWork W2030720381 @default.
- W4312139969 hasRelatedWork W2346844827 @default.
- W4312139969 hasRelatedWork W2981593054 @default.
- W4312139969 hasRelatedWork W3040300087 @default.
- W4312139969 hasRelatedWork W3093882935 @default.
- W4312139969 hasRelatedWork W4200276008 @default.
- W4312139969 hasRelatedWork W4206551998 @default.
- W4312139969 hasRelatedWork W4226496782 @default.
- W4312139969 hasRelatedWork W4283117930 @default.
- W4312139969 hasRelatedWork W4285049417 @default.
- W4312139969 hasVolume "15" @default.
- W4312139969 isParatext "false" @default.
- W4312139969 isRetracted "false" @default.
- W4312139969 workType "article" @default.