Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312141855> ?p ?o ?g. }
- W4312141855 endingPage "11945" @default.
- W4312141855 startingPage "11934" @default.
- W4312141855 abstract "Electromagnetic full waveform inversion (FWI) is a high-resolution method to reveal the distribution of dielectric parameters of the medium. Traditionally, the electromagnetic FWI is usually performed using the <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$L_{2}$ </tex-math></inline-formula> norm misfit function, which suffers severely local minimum problems since the <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$L_{2}$ </tex-math></inline-formula> norm misfit function is nonconvex in the model space. To mitigate the local minimum problem, the quadratic Wasserstein metric ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$W_{2}$ </tex-math></inline-formula> ) derived from the optimal transport theory is proposed to replace the <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$L_{2}$ </tex-math></inline-formula> norm to define the misfit function. Since the computation of the <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$W_{2}$ </tex-math></inline-formula> metric requires the signal to be mass conservation and nonnegativity, the softplus function is applied to rescale the signal to meet these two requirements. Based on the softplus scaling method, a hierarchy inversion strategy that involves multiple scaling coefficients is proposed to mitigate the local minimum problem without sacrificing the inversion resolution. The numerical experiments prove that the FWI based on <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$W_{2}$ </tex-math></inline-formula> ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$W_{2}$ </tex-math></inline-formula> -FWI) is more independent on the initial model than the FWI based on the <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$L_{2}$ </tex-math></inline-formula> norm ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$L_{2}$ </tex-math></inline-formula> -FWI), and the <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$W_{2}$ </tex-math></inline-formula> -FWI could be more robust to zero-mean random noise than the <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$L_{2}$ </tex-math></inline-formula> -FWI. Finally, a comprehensive numerical experiment related to asteroid radar tomography is carried out to show the potential of <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$W_{2}$ </tex-math></inline-formula> -FWI in realistic applications." @default.
- W4312141855 created "2023-01-04" @default.
- W4312141855 creator A5011129389 @default.
- W4312141855 creator A5018537709 @default.
- W4312141855 creator A5020873972 @default.
- W4312141855 creator A5036497958 @default.
- W4312141855 creator A5075790506 @default.
- W4312141855 creator A5085801490 @default.
- W4312141855 date "2022-12-01" @default.
- W4312141855 modified "2023-10-18" @default.
- W4312141855 title "Electromagnetic Full Waveform Inversion Based on Quadratic Wasserstein Metric" @default.
- W4312141855 cites W1840119212 @default.
- W4312141855 cites W1963235885 @default.
- W4312141855 cites W1980591793 @default.
- W4312141855 cites W2005490094 @default.
- W4312141855 cites W2007787802 @default.
- W4312141855 cites W2016085417 @default.
- W4312141855 cites W2034728026 @default.
- W4312141855 cites W2035700792 @default.
- W4312141855 cites W2041129188 @default.
- W4312141855 cites W2069624343 @default.
- W4312141855 cites W2076801080 @default.
- W4312141855 cites W2087774907 @default.
- W4312141855 cites W2100245965 @default.
- W4312141855 cites W2115902315 @default.
- W4312141855 cites W2122325233 @default.
- W4312141855 cites W2123275507 @default.
- W4312141855 cites W2137454227 @default.
- W4312141855 cites W2150240527 @default.
- W4312141855 cites W2159598897 @default.
- W4312141855 cites W2331422999 @default.
- W4312141855 cites W2516496171 @default.
- W4312141855 cites W2522338163 @default.
- W4312141855 cites W2558389241 @default.
- W4312141855 cites W2586372192 @default.
- W4312141855 cites W2735418187 @default.
- W4312141855 cites W2742763625 @default.
- W4312141855 cites W2750105899 @default.
- W4312141855 cites W2766119977 @default.
- W4312141855 cites W2791343747 @default.
- W4312141855 cites W2912982399 @default.
- W4312141855 cites W2944790044 @default.
- W4312141855 cites W2947679247 @default.
- W4312141855 cites W2962678797 @default.
- W4312141855 cites W2963481461 @default.
- W4312141855 cites W2963606666 @default.
- W4312141855 cites W3009330671 @default.
- W4312141855 cites W3099494581 @default.
- W4312141855 cites W3184096788 @default.
- W4312141855 cites W4292982117 @default.
- W4312141855 cites W89307273 @default.
- W4312141855 doi "https://doi.org/10.1109/tap.2022.3209745" @default.
- W4312141855 hasPublicationYear "2022" @default.
- W4312141855 type Work @default.
- W4312141855 citedByCount "1" @default.
- W4312141855 crossrefType "journal-article" @default.
- W4312141855 hasAuthorship W4312141855A5011129389 @default.
- W4312141855 hasAuthorship W4312141855A5018537709 @default.
- W4312141855 hasAuthorship W4312141855A5020873972 @default.
- W4312141855 hasAuthorship W4312141855A5036497958 @default.
- W4312141855 hasAuthorship W4312141855A5075790506 @default.
- W4312141855 hasAuthorship W4312141855A5085801490 @default.
- W4312141855 hasBestOaLocation W43121418552 @default.
- W4312141855 hasConcept C11413529 @default.
- W4312141855 hasConcept C118615104 @default.
- W4312141855 hasConcept C129844170 @default.
- W4312141855 hasConcept C162324750 @default.
- W4312141855 hasConcept C176217482 @default.
- W4312141855 hasConcept C17744445 @default.
- W4312141855 hasConcept C191795146 @default.
- W4312141855 hasConcept C199539241 @default.
- W4312141855 hasConcept C21547014 @default.
- W4312141855 hasConcept C2524010 @default.
- W4312141855 hasConcept C33923547 @default.
- W4312141855 hasConcept C45357846 @default.
- W4312141855 hasConcept C94375191 @default.
- W4312141855 hasConceptScore W4312141855C11413529 @default.
- W4312141855 hasConceptScore W4312141855C118615104 @default.
- W4312141855 hasConceptScore W4312141855C129844170 @default.
- W4312141855 hasConceptScore W4312141855C162324750 @default.
- W4312141855 hasConceptScore W4312141855C176217482 @default.
- W4312141855 hasConceptScore W4312141855C17744445 @default.
- W4312141855 hasConceptScore W4312141855C191795146 @default.
- W4312141855 hasConceptScore W4312141855C199539241 @default.
- W4312141855 hasConceptScore W4312141855C21547014 @default.
- W4312141855 hasConceptScore W4312141855C2524010 @default.
- W4312141855 hasConceptScore W4312141855C33923547 @default.
- W4312141855 hasConceptScore W4312141855C45357846 @default.
- W4312141855 hasConceptScore W4312141855C94375191 @default.
- W4312141855 hasFunder F4320317129 @default.
- W4312141855 hasFunder F4320321001 @default.
- W4312141855 hasIssue "12" @default.
- W4312141855 hasLocation W43121418551 @default.
- W4312141855 hasLocation W43121418552 @default.
- W4312141855 hasOpenAccess W4312141855 @default.
- W4312141855 hasPrimaryLocation W43121418551 @default.
- W4312141855 hasRelatedWork W1897792427 @default.
- W4312141855 hasRelatedWork W1996751237 @default.