Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312143472> ?p ?o ?g. }
- W4312143472 endingPage "109973" @default.
- W4312143472 startingPage "109973" @default.
- W4312143472 abstract "The construction of smart grid is inseparable from the appropriate deployment of utility poles. China has many poles; if they are fully utilized, can they bring more power to the smart grid? Fortunately, thanks to advances in technologies such as artificial intelligence and the Internet of Things, can we use Google Earth to recognize utility poles and optimize the deployment of power facilities? Fundamentally, Google Earth generates static images. Faced with many static images, we need further image processing for high-definition recognition of utility poles. In addition to the current chaotic distribution of poles, we also need to optimize the deployment of power facilities. However, due to the resolution of Google Earth and the aerial photography angle, many backlight phenomena are not conducive to the recognition of utility poles. Therefore, this paper proposes a backlight image enhancement algorithm based on convolutional neural networks (CNN) and constructs a novel network architecture that integrates decomposition, restoration, and adjustment to recognize poles in high-definition under backlight. Furthermore, to solve the problems of the overflow of CNN parameters and unclear training effect, particle swarm optimization (PSO), the evolutionary computing-based machine learning (ECML) is used to search CNN parameters automatically and seek the optimal solution to achieve the optimization of the overall model. The experiments prove that the CNN-based image enhancement algorithm effectively recognizes the utility poles under different illumination and backlight. At the same time, the experimental results show that the PSO-based optimization method can optimize CNN parameters obviously, and the classification accuracy is increased." @default.
- W4312143472 created "2023-01-04" @default.
- W4312143472 creator A5000312734 @default.
- W4312143472 creator A5001754147 @default.
- W4312143472 creator A5003516630 @default.
- W4312143472 creator A5024818901 @default.
- W4312143472 creator A5061589068 @default.
- W4312143472 creator A5074720427 @default.
- W4312143472 date "2023-02-01" @default.
- W4312143472 modified "2023-09-26" @default.
- W4312143472 title "ECML driven geographical location of utility poles in smart grid: Data analysis and high-definition recognition" @default.
- W4312143472 cites W1849277567 @default.
- W4312143472 cites W1989572366 @default.
- W4312143472 cites W2038131782 @default.
- W4312143472 cites W2052855935 @default.
- W4312143472 cites W2064550757 @default.
- W4312143472 cites W2262862168 @default.
- W4312143472 cites W2305253737 @default.
- W4312143472 cites W2507340489 @default.
- W4312143472 cites W2566376500 @default.
- W4312143472 cites W2620296437 @default.
- W4312143472 cites W2626564823 @default.
- W4312143472 cites W2750342461 @default.
- W4312143472 cites W2755775369 @default.
- W4312143472 cites W2768914963 @default.
- W4312143472 cites W2789758842 @default.
- W4312143472 cites W2792858770 @default.
- W4312143472 cites W2800529494 @default.
- W4312143472 cites W2889723130 @default.
- W4312143472 cites W2897245089 @default.
- W4312143472 cites W2897512563 @default.
- W4312143472 cites W2901767323 @default.
- W4312143472 cites W2912345866 @default.
- W4312143472 cites W2912638386 @default.
- W4312143472 cites W2913502105 @default.
- W4312143472 cites W2929047015 @default.
- W4312143472 cites W2945476444 @default.
- W4312143472 cites W2957375862 @default.
- W4312143472 cites W2971483169 @default.
- W4312143472 cites W2999091925 @default.
- W4312143472 cites W3007387899 @default.
- W4312143472 cites W3015596228 @default.
- W4312143472 cites W3082172267 @default.
- W4312143472 cites W3085115807 @default.
- W4312143472 cites W3087276618 @default.
- W4312143472 cites W3097450573 @default.
- W4312143472 cites W3109741163 @default.
- W4312143472 cites W3132556563 @default.
- W4312143472 cites W3135057764 @default.
- W4312143472 cites W3154623308 @default.
- W4312143472 cites W3156354504 @default.
- W4312143472 cites W3167237624 @default.
- W4312143472 cites W3169767072 @default.
- W4312143472 cites W3193175183 @default.
- W4312143472 cites W3203020985 @default.
- W4312143472 cites W3203553171 @default.
- W4312143472 cites W3205076022 @default.
- W4312143472 cites W3206702328 @default.
- W4312143472 cites W4206363793 @default.
- W4312143472 cites W4220912579 @default.
- W4312143472 cites W4224286101 @default.
- W4312143472 cites W4283801178 @default.
- W4312143472 cites W4286492019 @default.
- W4312143472 cites W4293237953 @default.
- W4312143472 doi "https://doi.org/10.1016/j.asoc.2022.109973" @default.
- W4312143472 hasPublicationYear "2023" @default.
- W4312143472 type Work @default.
- W4312143472 citedByCount "0" @default.
- W4312143472 crossrefType "journal-article" @default.
- W4312143472 hasAuthorship W4312143472A5000312734 @default.
- W4312143472 hasAuthorship W4312143472A5001754147 @default.
- W4312143472 hasAuthorship W4312143472A5003516630 @default.
- W4312143472 hasAuthorship W4312143472A5024818901 @default.
- W4312143472 hasAuthorship W4312143472A5061589068 @default.
- W4312143472 hasAuthorship W4312143472A5074720427 @default.
- W4312143472 hasConcept C105339364 @default.
- W4312143472 hasConcept C10558101 @default.
- W4312143472 hasConcept C111919701 @default.
- W4312143472 hasConcept C119857082 @default.
- W4312143472 hasConcept C128019096 @default.
- W4312143472 hasConcept C154945302 @default.
- W4312143472 hasConcept C171107226 @default.
- W4312143472 hasConcept C187691185 @default.
- W4312143472 hasConcept C18903297 @default.
- W4312143472 hasConcept C2524010 @default.
- W4312143472 hasConcept C33923547 @default.
- W4312143472 hasConcept C41008148 @default.
- W4312143472 hasConcept C81363708 @default.
- W4312143472 hasConcept C85617194 @default.
- W4312143472 hasConcept C86803240 @default.
- W4312143472 hasConceptScore W4312143472C105339364 @default.
- W4312143472 hasConceptScore W4312143472C10558101 @default.
- W4312143472 hasConceptScore W4312143472C111919701 @default.
- W4312143472 hasConceptScore W4312143472C119857082 @default.
- W4312143472 hasConceptScore W4312143472C128019096 @default.
- W4312143472 hasConceptScore W4312143472C154945302 @default.
- W4312143472 hasConceptScore W4312143472C171107226 @default.
- W4312143472 hasConceptScore W4312143472C187691185 @default.