Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312155306> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4312155306 endingPage "012020" @default.
- W4312155306 startingPage "012020" @default.
- W4312155306 abstract "Abstract Hyperparameter optimization in machine learning models may help enhance the efficiency of obtaining high-quality tomographic pictures, the purpose of this paper. In the discipline of electrical impedance tomography, machine learning techniques are utilized to translate voltage measurements into reconstruction pictures. Because of this, the so-called inverse problem arises, whereby the optimal answer must be sought. Effective machine learning relies heavily on the appropriate choice of model coefficients (hyperparameters). As a consequence, the strategies used to improve this choice have an indirect effect on the final reconstruction. The K -nearest neighbors strategy may be utilized to improve a machine learning model based on linear regression and classification models, as we show in this paper. Electrical tomography, a technology that analyses flood embankments from the interior to measure their structural integrity, makes use of the methods outlined above. The data gathered shows that the suggested solutions work." @default.
- W4312155306 created "2023-01-04" @default.
- W4312155306 creator A5057790457 @default.
- W4312155306 creator A5059934217 @default.
- W4312155306 creator A5066003040 @default.
- W4312155306 creator A5070349657 @default.
- W4312155306 creator A5073447410 @default.
- W4312155306 date "2022-12-01" @default.
- W4312155306 modified "2023-09-30" @default.
- W4312155306 title "Improving the tomographic image by enhancing the machine learning algorithm" @default.
- W4312155306 cites W2041556066 @default.
- W4312155306 cites W2476358294 @default.
- W4312155306 cites W2567369551 @default.
- W4312155306 cites W2751484639 @default.
- W4312155306 cites W2805890534 @default.
- W4312155306 cites W2888132780 @default.
- W4312155306 cites W2895818516 @default.
- W4312155306 cites W2954952990 @default.
- W4312155306 cites W3134320426 @default.
- W4312155306 cites W3135356565 @default.
- W4312155306 doi "https://doi.org/10.1088/1742-6596/2408/1/012020" @default.
- W4312155306 hasPublicationYear "2022" @default.
- W4312155306 type Work @default.
- W4312155306 citedByCount "0" @default.
- W4312155306 crossrefType "journal-article" @default.
- W4312155306 hasAuthorship W4312155306A5057790457 @default.
- W4312155306 hasAuthorship W4312155306A5059934217 @default.
- W4312155306 hasAuthorship W4312155306A5066003040 @default.
- W4312155306 hasAuthorship W4312155306A5070349657 @default.
- W4312155306 hasAuthorship W4312155306A5073447410 @default.
- W4312155306 hasBestOaLocation W43121553061 @default.
- W4312155306 hasConcept C111472728 @default.
- W4312155306 hasConcept C11413529 @default.
- W4312155306 hasConcept C119857082 @default.
- W4312155306 hasConcept C120665830 @default.
- W4312155306 hasConcept C121332964 @default.
- W4312155306 hasConcept C134306372 @default.
- W4312155306 hasConcept C135252773 @default.
- W4312155306 hasConcept C138885662 @default.
- W4312155306 hasConcept C154945302 @default.
- W4312155306 hasConcept C155175808 @default.
- W4312155306 hasConcept C163716698 @default.
- W4312155306 hasConcept C2779530757 @default.
- W4312155306 hasConcept C33923547 @default.
- W4312155306 hasConcept C41008148 @default.
- W4312155306 hasConcept C8642999 @default.
- W4312155306 hasConceptScore W4312155306C111472728 @default.
- W4312155306 hasConceptScore W4312155306C11413529 @default.
- W4312155306 hasConceptScore W4312155306C119857082 @default.
- W4312155306 hasConceptScore W4312155306C120665830 @default.
- W4312155306 hasConceptScore W4312155306C121332964 @default.
- W4312155306 hasConceptScore W4312155306C134306372 @default.
- W4312155306 hasConceptScore W4312155306C135252773 @default.
- W4312155306 hasConceptScore W4312155306C138885662 @default.
- W4312155306 hasConceptScore W4312155306C154945302 @default.
- W4312155306 hasConceptScore W4312155306C155175808 @default.
- W4312155306 hasConceptScore W4312155306C163716698 @default.
- W4312155306 hasConceptScore W4312155306C2779530757 @default.
- W4312155306 hasConceptScore W4312155306C33923547 @default.
- W4312155306 hasConceptScore W4312155306C41008148 @default.
- W4312155306 hasConceptScore W4312155306C8642999 @default.
- W4312155306 hasIssue "1" @default.
- W4312155306 hasLocation W43121553061 @default.
- W4312155306 hasOpenAccess W4312155306 @default.
- W4312155306 hasPrimaryLocation W43121553061 @default.
- W4312155306 hasRelatedWork W2120850092 @default.
- W4312155306 hasRelatedWork W2165247971 @default.
- W4312155306 hasRelatedWork W3199608561 @default.
- W4312155306 hasRelatedWork W4210794429 @default.
- W4312155306 hasRelatedWork W4223456145 @default.
- W4312155306 hasRelatedWork W4283697347 @default.
- W4312155306 hasRelatedWork W4295309597 @default.
- W4312155306 hasRelatedWork W4309113015 @default.
- W4312155306 hasRelatedWork W4323894855 @default.
- W4312155306 hasRelatedWork W2786504317 @default.
- W4312155306 hasVolume "2408" @default.
- W4312155306 isParatext "false" @default.
- W4312155306 isRetracted "false" @default.
- W4312155306 workType "article" @default.