Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312156960> ?p ?o ?g. }
- W4312156960 endingPage "109032" @default.
- W4312156960 startingPage "109032" @default.
- W4312156960 abstract "This study aims to predict ground vibration intensity in mine blasting, which is measured by peak particle velocity (PPV), using three novel intelligent models based on metaheuristic algorithms and extreme learning machine (ELM) model, including salp swarm optimization (SalSO), sparrow search optimization (SpaSO), and moth-flame optimization (MFO), named as SpaSO-ELM, SalSO-ELM, and MFO-ELM models. In this study, the SpaSO, SalSO and MFO algorithms were utilized to optimize the weights of the ELM for predicting PPV based on their different optimization mechanisms. In order to assess the performance of these models, 216 blasting records were considered and the corresponding PPV values were measured at the Coc Sau open-pit coal mine (located in the North of Vietnam). The algorithms’ parameters were structured with different activation functions of the ELM model. Furthermore, in order to diagnose the improvement of the SpaSO-ELM, SalSO-ELM, and MFO-ELM models, the standalone ELM and two empirical models (linear and nonlinear models) were also investigated and evaluated. The results revealed that nonlinear models are potential candidates for predicting PPV, and the ELM-based models are robust solutions to model the nonlinear relationships of the dataset. The developed models were then also validated in practical engineering, and the findings indicated that the SpaSO-ELM model is the best intelligent model for predicting PPV in this study with an accuracy of 91.4%. The remaining hybrid models provided slightly lower performances with the accuracies in the range of 89.8%—90.5%. Although the nonlinear empirical model predicted PPV much better than the linear model; its performance is still significantly lower than the proposed hybrid intelligent models. Thus, the optimized metaheuristic-based ELM models proposed in this study are considered as the high reliability models for predicting blast-induced ground vibration intensity in open-pit mines to ensure the safety of the surroundings." @default.
- W4312156960 created "2023-01-04" @default.
- W4312156960 creator A5029825749 @default.
- W4312156960 creator A5064619766 @default.
- W4312156960 creator A5080411341 @default.
- W4312156960 date "2023-03-01" @default.
- W4312156960 modified "2023-10-12" @default.
- W4312156960 title "Reliability and availability artificial intelligence models for predicting blast-induced ground vibration intensity in open-pit mines to ensure the safety of the surroundings" @default.
- W4312156960 cites W1081565272 @default.
- W4312156960 cites W1996980189 @default.
- W4312156960 cites W2007999742 @default.
- W4312156960 cites W2038920419 @default.
- W4312156960 cites W2048604638 @default.
- W4312156960 cites W2121846964 @default.
- W4312156960 cites W2467137540 @default.
- W4312156960 cites W2516398737 @default.
- W4312156960 cites W2516616538 @default.
- W4312156960 cites W2525708766 @default.
- W4312156960 cites W2734947877 @default.
- W4312156960 cites W2738900493 @default.
- W4312156960 cites W2791350248 @default.
- W4312156960 cites W2914790694 @default.
- W4312156960 cites W2923031191 @default.
- W4312156960 cites W2943197862 @default.
- W4312156960 cites W2944288964 @default.
- W4312156960 cites W2953395395 @default.
- W4312156960 cites W2965777198 @default.
- W4312156960 cites W2977032761 @default.
- W4312156960 cites W2998553334 @default.
- W4312156960 cites W3009818760 @default.
- W4312156960 cites W3046573690 @default.
- W4312156960 cites W3094173117 @default.
- W4312156960 cites W3121025607 @default.
- W4312156960 cites W3128282133 @default.
- W4312156960 cites W3128690765 @default.
- W4312156960 cites W3131554761 @default.
- W4312156960 cites W3157471513 @default.
- W4312156960 cites W3180036372 @default.
- W4312156960 cites W3188968325 @default.
- W4312156960 cites W3194207558 @default.
- W4312156960 cites W3205140864 @default.
- W4312156960 cites W3206065876 @default.
- W4312156960 cites W3207298166 @default.
- W4312156960 cites W3208056506 @default.
- W4312156960 cites W4200222469 @default.
- W4312156960 cites W4200298083 @default.
- W4312156960 cites W4206095525 @default.
- W4312156960 cites W883434633 @default.
- W4312156960 doi "https://doi.org/10.1016/j.ress.2022.109032" @default.
- W4312156960 hasPublicationYear "2023" @default.
- W4312156960 type Work @default.
- W4312156960 citedByCount "4" @default.
- W4312156960 countsByYear W43121569602023 @default.
- W4312156960 crossrefType "journal-article" @default.
- W4312156960 hasAuthorship W4312156960A5029825749 @default.
- W4312156960 hasAuthorship W4312156960A5064619766 @default.
- W4312156960 hasAuthorship W4312156960A5080411341 @default.
- W4312156960 hasConcept C11413529 @default.
- W4312156960 hasConcept C121332964 @default.
- W4312156960 hasConcept C127413603 @default.
- W4312156960 hasConcept C133199616 @default.
- W4312156960 hasConcept C146978453 @default.
- W4312156960 hasConcept C154945302 @default.
- W4312156960 hasConcept C158622935 @default.
- W4312156960 hasConcept C204323151 @default.
- W4312156960 hasConcept C2780150128 @default.
- W4312156960 hasConcept C41008148 @default.
- W4312156960 hasConcept C44154836 @default.
- W4312156960 hasConcept C50644808 @default.
- W4312156960 hasConcept C5351157 @default.
- W4312156960 hasConcept C62520636 @default.
- W4312156960 hasConcept C85617194 @default.
- W4312156960 hasConceptScore W4312156960C11413529 @default.
- W4312156960 hasConceptScore W4312156960C121332964 @default.
- W4312156960 hasConceptScore W4312156960C127413603 @default.
- W4312156960 hasConceptScore W4312156960C133199616 @default.
- W4312156960 hasConceptScore W4312156960C146978453 @default.
- W4312156960 hasConceptScore W4312156960C154945302 @default.
- W4312156960 hasConceptScore W4312156960C158622935 @default.
- W4312156960 hasConceptScore W4312156960C204323151 @default.
- W4312156960 hasConceptScore W4312156960C2780150128 @default.
- W4312156960 hasConceptScore W4312156960C41008148 @default.
- W4312156960 hasConceptScore W4312156960C44154836 @default.
- W4312156960 hasConceptScore W4312156960C50644808 @default.
- W4312156960 hasConceptScore W4312156960C5351157 @default.
- W4312156960 hasConceptScore W4312156960C62520636 @default.
- W4312156960 hasConceptScore W4312156960C85617194 @default.
- W4312156960 hasLocation W43121569601 @default.
- W4312156960 hasOpenAccess W4312156960 @default.
- W4312156960 hasPrimaryLocation W43121569601 @default.
- W4312156960 hasRelatedWork W2891413775 @default.
- W4312156960 hasRelatedWork W2899084033 @default.
- W4312156960 hasRelatedWork W2899463518 @default.
- W4312156960 hasRelatedWork W2899574660 @default.
- W4312156960 hasRelatedWork W3135858030 @default.
- W4312156960 hasRelatedWork W4210657075 @default.
- W4312156960 hasRelatedWork W4214871907 @default.
- W4312156960 hasRelatedWork W4283521494 @default.