Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312163935> ?p ?o ?g. }
- W4312163935 abstract "Landslide is a severe geohazard in many mountainous areas of Vietnam during the rainy season. They directly threaten human lives and properties every year. Landslide susceptibility maps are useful tools for risk mitigation, land-use planning, and early warning systems for local areas. It is necessary to update these maps continuously because of the complexity of landslide events. This fact requires further extending the approach techniques with practical implications. Therefore, this study aimed to develop landslide susceptibility prediction maps based on advanced machine learning (ML) techniques. Five state-of-the-art hybrid ML models were developed: bagging MLP, dagging MLP, decorate MLP, rotation forest MLP, and random subspace MLP with multilayer perceptron (MLP) as a base classifier. Sixteen causative factors were collected to build landslide susceptibility maps based on the relationship between historical landslide locations and specific local geo-environmental conditions. The model performance was verified using various statistical indexes. Based on the area under ROC curve (AUC) analysis results of the testing dataset, the rotation forest MLP model has the greatest predictive accuracy of AUC = 0.818. It is followed by the decorate MLP and bagging MLP (AUC = 0.804), the random subspace MLP model (AUC = 0.796), the dagging MLP (AUC = 0.789), and the single MLP (AUC = 0.698). The results of this study can be applied effectively to other mountainous regions to mitigate the risk of landslides." @default.
- W4312163935 created "2023-01-04" @default.
- W4312163935 creator A5018522115 @default.
- W4312163935 creator A5051298365 @default.
- W4312163935 creator A5062169526 @default.
- W4312163935 creator A5062317935 @default.
- W4312163935 creator A5062651921 @default.
- W4312163935 creator A5070290470 @default.
- W4312163935 creator A5079452761 @default.
- W4312163935 date "2022-12-23" @default.
- W4312163935 modified "2023-09-27" @default.
- W4312163935 title "Landslide susceptibility prediction mapping with advanced ensemble models: Son La province, Vietnam" @default.
- W4312163935 cites W1490753825 @default.
- W4312163935 cites W1582288029 @default.
- W4312163935 cites W1865546541 @default.
- W4312163935 cites W1971095756 @default.
- W4312163935 cites W1976033516 @default.
- W4312163935 cites W1980725494 @default.
- W4312163935 cites W1995159463 @default.
- W4312163935 cites W2002620848 @default.
- W4312163935 cites W2017458088 @default.
- W4312163935 cites W2028905613 @default.
- W4312163935 cites W2030333538 @default.
- W4312163935 cites W2045076638 @default.
- W4312163935 cites W2049409188 @default.
- W4312163935 cites W2053449690 @default.
- W4312163935 cites W2056214587 @default.
- W4312163935 cites W2057388082 @default.
- W4312163935 cites W2063881968 @default.
- W4312163935 cites W2063987149 @default.
- W4312163935 cites W2078461092 @default.
- W4312163935 cites W2080134555 @default.
- W4312163935 cites W2082474103 @default.
- W4312163935 cites W2082941103 @default.
- W4312163935 cites W2092448984 @default.
- W4312163935 cites W2094401449 @default.
- W4312163935 cites W2112901542 @default.
- W4312163935 cites W2113242816 @default.
- W4312163935 cites W2118578744 @default.
- W4312163935 cites W2124593695 @default.
- W4312163935 cites W2134955829 @default.
- W4312163935 cites W2137318649 @default.
- W4312163935 cites W2142355173 @default.
- W4312163935 cites W2147618150 @default.
- W4312163935 cites W2150757437 @default.
- W4312163935 cites W2152761983 @default.
- W4312163935 cites W2178987275 @default.
- W4312163935 cites W2287278712 @default.
- W4312163935 cites W2304932561 @default.
- W4312163935 cites W2409641346 @default.
- W4312163935 cites W2519746072 @default.
- W4312163935 cites W2523887947 @default.
- W4312163935 cites W2565656421 @default.
- W4312163935 cites W2609194414 @default.
- W4312163935 cites W2614184399 @default.
- W4312163935 cites W2622536348 @default.
- W4312163935 cites W2789555074 @default.
- W4312163935 cites W2792798393 @default.
- W4312163935 cites W2795103316 @default.
- W4312163935 cites W2805531306 @default.
- W4312163935 cites W2808860853 @default.
- W4312163935 cites W2810807595 @default.
- W4312163935 cites W2811032661 @default.
- W4312163935 cites W2811440115 @default.
- W4312163935 cites W2880239935 @default.
- W4312163935 cites W2883293193 @default.
- W4312163935 cites W2888964430 @default.
- W4312163935 cites W2889223999 @default.
- W4312163935 cites W2898853771 @default.
- W4312163935 cites W2905564388 @default.
- W4312163935 cites W2921093430 @default.
- W4312163935 cites W2940874045 @default.
- W4312163935 cites W2943912989 @default.
- W4312163935 cites W2971998616 @default.
- W4312163935 cites W2978522609 @default.
- W4312163935 cites W2979806575 @default.
- W4312163935 cites W2991227711 @default.
- W4312163935 cites W3005376489 @default.
- W4312163935 cites W3005741980 @default.
- W4312163935 cites W3006655399 @default.
- W4312163935 cites W3008924545 @default.
- W4312163935 cites W3022053731 @default.
- W4312163935 cites W3030139844 @default.
- W4312163935 cites W3036638755 @default.
- W4312163935 cites W3038871125 @default.
- W4312163935 cites W3039888984 @default.
- W4312163935 cites W3040332201 @default.
- W4312163935 cites W3049181801 @default.
- W4312163935 cites W3087095181 @default.
- W4312163935 cites W3107988978 @default.
- W4312163935 cites W3142305414 @default.
- W4312163935 cites W3155183023 @default.
- W4312163935 cites W3162382803 @default.
- W4312163935 cites W3173407224 @default.
- W4312163935 cites W3174519228 @default.
- W4312163935 cites W3174896379 @default.
- W4312163935 cites W3206645808 @default.
- W4312163935 cites W4212883601 @default.
- W4312163935 doi "https://doi.org/10.1007/s11069-022-05764-3" @default.
- W4312163935 hasPublicationYear "2022" @default.