Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312173456> ?p ?o ?g. }
- W4312173456 endingPage "124" @default.
- W4312173456 startingPage "124" @default.
- W4312173456 abstract "Artificial Intelligence of things (AIoT) is the combination of Artificial Intelligence (AI) technologies and the Internet of Things (IoT) infrastructure. AI deals with the devices’ learning process to acquire knowledge from data and experience, while IoT concerns devices interacting with each other using the Internet. AIoT has been proven to be a very effective paradigm for several existing applications as well as for new areas, especially in the field of satellite communication systems with mega-constellations. When AIoT meets space communications efficiently, we have interesting uses of AI for Satellite IoT (SIoT). In fact, the number of space debris is continuously increasing as well as the risk of space collisions, and this poses a significant threat to the sustainability and safety of space operations that must be carefully and efficiently addressed to avoid critical damage to the SIoT networks. This paper aims to provide a systematic survey of the state of the art, challenges, and perspectives on the use of deep learning methods for space situational awareness (SSA) object detection and classification. The contributions of this paper can be summarized as follows: (i) we outline using AI algorithms, and in particular, deep learning (DL) methods, the possibility of identifying the nature/type of spatial objects by processing signals from radars; (ii) we present a comprehensive taxonomy of DL-based methods applied to SSA object detection and classification, as well as their characteristics, and implementation issues." @default.
- W4312173456 created "2023-01-04" @default.
- W4312173456 creator A5017071934 @default.
- W4312173456 creator A5066071482 @default.
- W4312173456 creator A5081380044 @default.
- W4312173456 date "2022-12-23" @default.
- W4312173456 modified "2023-09-25" @default.
- W4312173456 title "Deep Learning Methods for Space Situational Awareness in Mega-Constellations Satellite-Based Internet of Things Networks" @default.
- W4312173456 cites W1622616609 @default.
- W4312173456 cites W1642359750 @default.
- W4312173456 cites W1926306387 @default.
- W4312173456 cites W1975903663 @default.
- W4312173456 cites W1994070335 @default.
- W4312173456 cites W2010482998 @default.
- W4312173456 cites W2097117768 @default.
- W4312173456 cites W2098893304 @default.
- W4312173456 cites W2108598243 @default.
- W4312173456 cites W2111485333 @default.
- W4312173456 cites W2167032410 @default.
- W4312173456 cites W2172016258 @default.
- W4312173456 cites W2248880694 @default.
- W4312173456 cites W2323122120 @default.
- W4312173456 cites W2328845603 @default.
- W4312173456 cites W2404139833 @default.
- W4312173456 cites W2531502724 @default.
- W4312173456 cites W2549274538 @default.
- W4312173456 cites W2618530766 @default.
- W4312173456 cites W2782346981 @default.
- W4312173456 cites W2804870843 @default.
- W4312173456 cites W2806819981 @default.
- W4312173456 cites W2808836139 @default.
- W4312173456 cites W2809824905 @default.
- W4312173456 cites W2810844950 @default.
- W4312173456 cites W2854432923 @default.
- W4312173456 cites W2905834344 @default.
- W4312173456 cites W2918977601 @default.
- W4312173456 cites W2953532875 @default.
- W4312173456 cites W2961108520 @default.
- W4312173456 cites W2963386712 @default.
- W4312173456 cites W2972102932 @default.
- W4312173456 cites W2985465492 @default.
- W4312173456 cites W2994840662 @default.
- W4312173456 cites W2998015358 @default.
- W4312173456 cites W2999327164 @default.
- W4312173456 cites W3007493000 @default.
- W4312173456 cites W3008383159 @default.
- W4312173456 cites W3011307937 @default.
- W4312173456 cites W3015551094 @default.
- W4312173456 cites W3035393628 @default.
- W4312173456 cites W3047840651 @default.
- W4312173456 cites W3048664057 @default.
- W4312173456 cites W3096889352 @default.
- W4312173456 cites W3105245647 @default.
- W4312173456 cites W3105536548 @default.
- W4312173456 cites W3110928794 @default.
- W4312173456 cites W3126094774 @default.
- W4312173456 cites W3128704176 @default.
- W4312173456 cites W3141285120 @default.
- W4312173456 cites W3148315912 @default.
- W4312173456 cites W3154373807 @default.
- W4312173456 cites W3160526953 @default.
- W4312173456 cites W3170225760 @default.
- W4312173456 cites W3172994895 @default.
- W4312173456 cites W3175859440 @default.
- W4312173456 cites W3182797139 @default.
- W4312173456 cites W3193219851 @default.
- W4312173456 cites W3193448345 @default.
- W4312173456 cites W3202923701 @default.
- W4312173456 cites W3210303754 @default.
- W4312173456 cites W4220749160 @default.
- W4312173456 cites W4220910168 @default.
- W4312173456 cites W4220941310 @default.
- W4312173456 cites W4224935490 @default.
- W4312173456 cites W4226267621 @default.
- W4312173456 cites W4249560341 @default.
- W4312173456 cites W4250307848 @default.
- W4312173456 cites W4281731138 @default.
- W4312173456 cites W4283317753 @default.
- W4312173456 cites W4285188347 @default.
- W4312173456 cites W4286277815 @default.
- W4312173456 cites W4292379747 @default.
- W4312173456 cites W4293094031 @default.
- W4312173456 cites W4293252161 @default.
- W4312173456 cites W4300053945 @default.
- W4312173456 cites W4301184501 @default.
- W4312173456 cites W4306398621 @default.
- W4312173456 cites W4308933047 @default.
- W4312173456 doi "https://doi.org/10.3390/s23010124" @default.
- W4312173456 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36616722" @default.
- W4312173456 hasPublicationYear "2022" @default.
- W4312173456 type Work @default.
- W4312173456 citedByCount "0" @default.
- W4312173456 crossrefType "journal-article" @default.
- W4312173456 hasAuthorship W4312173456A5017071934 @default.
- W4312173456 hasAuthorship W4312173456A5066071482 @default.
- W4312173456 hasAuthorship W4312173456A5081380044 @default.
- W4312173456 hasBestOaLocation W43121734561 @default.
- W4312173456 hasConcept C108583219 @default.