Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312173607> ?p ?o ?g. }
- W4312173607 endingPage "43" @default.
- W4312173607 startingPage "43" @default.
- W4312173607 abstract "Anopheles mosquitoes are the vectors of human malaria, a disease responsible for a significant burden of global disease and over half a million deaths in 2020. Here, methods using a time series of cost-free Earth Observation (EO) data, 45,844 in situ mosquito monitoring captures, and the cloud processing platform Google Earth Engine are developed to identify the biogeographical variables driving the abundance and distribution of three malaria vectors—Anopheles gambiae s.l., An. funestus, and An. paludis—in two highly endemic areas in the Democratic Republic of the Congo. EO-derived topographical and time series land surface temperature and rainfall data sets are analysed using Random Forests (RFs) to identify their relative importance in relation to the abundance of the three mosquito species, and they show how spatial and temporal distributions vary by site, by mosquito species, and by month. The observed relationships differed between species and study areas, with the overall number of biogeographical variables identified as important in relation to species abundance, being 30 for An. gambiae s.l. and An. funestus and 26 for An. paludis. Results indicate rainfall and land surface temperature to consistently be the variables of highest importance, with higher rainfall resulting in greater mosquito abundance through the creation of pools acting as mosquito larval habitats; however, proportional coverage of forest and grassland, as well as proximity to forests, are also consistently identified as important. Predictive application of the RF models generated monthly abundance maps for each species, identifying both spatial and temporal hot-spots of high abundance and, by proxy, increased malaria infection risk. Results indicate greater temporal variability in An. gambiae s.l. and An. paludis abundances in response to seasonal rainfall, whereas An. funestus is generally more temporally stable, with maximum predicted abundances of 122 for An. gambiae s.l., 283 for An. funestus, and 120 for An. paludis. Model validation produced R2 values of 0.717 for An. gambiae s.l., 0.861 for An. funestus, and 0.448 for An. paludis. Monthly abundance values were extracted for 248,089 individual buildings, demonstrating how species abundance, and therefore biting pressure, varies spatially and seasonally on a building-to-building basis. These methods advance previous broader regional mosquito mapping and can provide a crucial tool for designing bespoke control programs and for improving the targeting of resource-constrained disease control activities to reduce malaria transmission and subsequent mortality in endemic regions, in line with the WHO’s ‘High Burden to High Impact’ initiative. The developed method was designed to be widely applicable to other areas, where suitable in situ mosquito monitoring data are available. Training materials were also made freely available in multiple languages, enabling wider uptake and implementation of the methods by users without requiring prior expertise in EO." @default.
- W4312173607 created "2023-01-04" @default.
- W4312173607 creator A5009746329 @default.
- W4312173607 creator A5016155006 @default.
- W4312173607 creator A5018652836 @default.
- W4312173607 creator A5033146873 @default.
- W4312173607 creator A5046418064 @default.
- W4312173607 creator A5049487258 @default.
- W4312173607 creator A5070281094 @default.
- W4312173607 creator A5083966057 @default.
- W4312173607 creator A5089254383 @default.
- W4312173607 date "2022-12-22" @default.
- W4312173607 modified "2023-10-14" @default.
- W4312173607 title "Developing the Role of Earth Observation in Spatio-Temporal Mosquito Modelling to Identify Malaria Hot-Spots" @default.
- W4312173607 cites W1729017034 @default.
- W4312173607 cites W1820063391 @default.
- W4312173607 cites W1941258550 @default.
- W4312173607 cites W1964217023 @default.
- W4312173607 cites W1966310354 @default.
- W4312173607 cites W1970550796 @default.
- W4312173607 cites W1970760887 @default.
- W4312173607 cites W1981755063 @default.
- W4312173607 cites W1984670836 @default.
- W4312173607 cites W1997149866 @default.
- W4312173607 cites W2003157532 @default.
- W4312173607 cites W2023863827 @default.
- W4312173607 cites W2026121367 @default.
- W4312173607 cites W2042094287 @default.
- W4312173607 cites W2056435747 @default.
- W4312173607 cites W2064326768 @default.
- W4312173607 cites W2077509829 @default.
- W4312173607 cites W2078115510 @default.
- W4312173607 cites W2084744129 @default.
- W4312173607 cites W2093206878 @default.
- W4312173607 cites W2097580896 @default.
- W4312173607 cites W2101678239 @default.
- W4312173607 cites W2104726108 @default.
- W4312173607 cites W2109109653 @default.
- W4312173607 cites W2112757949 @default.
- W4312173607 cites W2117242211 @default.
- W4312173607 cites W2120063353 @default.
- W4312173607 cites W2132030492 @default.
- W4312173607 cites W2133393555 @default.
- W4312173607 cites W2138055306 @default.
- W4312173607 cites W2139076457 @default.
- W4312173607 cites W2140901179 @default.
- W4312173607 cites W2146999458 @default.
- W4312173607 cites W2154534964 @default.
- W4312173607 cites W2156665896 @default.
- W4312173607 cites W2157200430 @default.
- W4312173607 cites W2166231658 @default.
- W4312173607 cites W2214297038 @default.
- W4312173607 cites W2261645655 @default.
- W4312173607 cites W2281846662 @default.
- W4312173607 cites W2282831896 @default.
- W4312173607 cites W2296297379 @default.
- W4312173607 cites W2314033461 @default.
- W4312173607 cites W2471292289 @default.
- W4312173607 cites W2496117949 @default.
- W4312173607 cites W2554140400 @default.
- W4312173607 cites W2579558620 @default.
- W4312173607 cites W2593086047 @default.
- W4312173607 cites W2725897987 @default.
- W4312173607 cites W2732792704 @default.
- W4312173607 cites W2755803111 @default.
- W4312173607 cites W2757279541 @default.
- W4312173607 cites W2765256800 @default.
- W4312173607 cites W2771599035 @default.
- W4312173607 cites W2786933398 @default.
- W4312173607 cites W2794644582 @default.
- W4312173607 cites W2799470826 @default.
- W4312173607 cites W2907340719 @default.
- W4312173607 cites W2913065079 @default.
- W4312173607 cites W2921776107 @default.
- W4312173607 cites W2952411786 @default.
- W4312173607 cites W2974894292 @default.
- W4312173607 cites W3037462021 @default.
- W4312173607 cites W3087096204 @default.
- W4312173607 cites W3134905925 @default.
- W4312173607 cites W3136729388 @default.
- W4312173607 doi "https://doi.org/10.3390/rs15010043" @default.
- W4312173607 hasPublicationYear "2022" @default.
- W4312173607 type Work @default.
- W4312173607 citedByCount "1" @default.
- W4312173607 countsByYear W43121736072023 @default.
- W4312173607 crossrefType "journal-article" @default.
- W4312173607 hasAuthorship W4312173607A5009746329 @default.
- W4312173607 hasAuthorship W4312173607A5016155006 @default.
- W4312173607 hasAuthorship W4312173607A5018652836 @default.
- W4312173607 hasAuthorship W4312173607A5033146873 @default.
- W4312173607 hasAuthorship W4312173607A5046418064 @default.
- W4312173607 hasAuthorship W4312173607A5049487258 @default.
- W4312173607 hasAuthorship W4312173607A5070281094 @default.
- W4312173607 hasAuthorship W4312173607A5083966057 @default.
- W4312173607 hasAuthorship W4312173607A5089254383 @default.
- W4312173607 hasBestOaLocation W43121736071 @default.
- W4312173607 hasConcept C100970517 @default.
- W4312173607 hasConcept C122325731 @default.