Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312189471> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4312189471 endingPage "721" @default.
- W4312189471 startingPage "713" @default.
- W4312189471 abstract "The process of training a neural network on calculation of closest point of approach (CPA) between two ships, and testing its performance and accuracy is described in the paper. The architecture of the neural network, the type of input and output data, and creation of training data set are also described in the paper. Feed Forward Neural Networks with Backpropagation algorithm are used; training method is Supervised with Levenberg-Marquardt algorithm. The input data are positions, courses and speeds of vessels in a certain area, the output data are Closest Points of Approach (CPA) between them. The process of writing a script in MATLAB software environment is described. The script allows a user to generate training data with any number of vessels in an area. Comparison of the time spent on CPA calculation using formulas and using neural networks is carried out. It has been proven that when processing large data arrays, the CPA calculation with neural networks is much faster than by means of formulas. After neural networks training process and the calculations results comparison, one neural network with mean squared error of 0.21 is chosen. It can be used for CPA calculations in MATLAB-based simulations. In the future this network might become a base for a collision-avoidance neural network system, which will allow vessels to manoeuvre safely in order to avoid collisions in a certain area." @default.
- W4312189471 created "2023-01-04" @default.
- W4312189471 creator A5027067693 @default.
- W4312189471 date "2022-12-14" @default.
- W4312189471 modified "2023-09-26" @default.
- W4312189471 title "TRAINING A NEURAL NETWORK TO CALCULATE THE CLOSEST POINT OF APPROACH" @default.
- W4312189471 cites W2114541394 @default.
- W4312189471 cites W2114604405 @default.
- W4312189471 cites W2157956475 @default.
- W4312189471 cites W2327298648 @default.
- W4312189471 cites W2890059413 @default.
- W4312189471 cites W2922120529 @default.
- W4312189471 cites W2982037327 @default.
- W4312189471 cites W2999840070 @default.
- W4312189471 cites W3047350571 @default.
- W4312189471 cites W3101762836 @default.
- W4312189471 cites W4205942993 @default.
- W4312189471 cites W4254826251 @default.
- W4312189471 doi "https://doi.org/10.21821/2309-5180-2022-14-5-713-721" @default.
- W4312189471 hasPublicationYear "2022" @default.
- W4312189471 type Work @default.
- W4312189471 citedByCount "0" @default.
- W4312189471 crossrefType "journal-article" @default.
- W4312189471 hasAuthorship W4312189471A5027067693 @default.
- W4312189471 hasBestOaLocation W43121894711 @default.
- W4312189471 hasConcept C111919701 @default.
- W4312189471 hasConcept C11413529 @default.
- W4312189471 hasConcept C121332964 @default.
- W4312189471 hasConcept C153294291 @default.
- W4312189471 hasConcept C154945302 @default.
- W4312189471 hasConcept C155032097 @default.
- W4312189471 hasConcept C175202392 @default.
- W4312189471 hasConcept C177264268 @default.
- W4312189471 hasConcept C199360897 @default.
- W4312189471 hasConcept C21080849 @default.
- W4312189471 hasConcept C2524010 @default.
- W4312189471 hasConcept C2777211547 @default.
- W4312189471 hasConcept C2780365114 @default.
- W4312189471 hasConcept C28719098 @default.
- W4312189471 hasConcept C33923547 @default.
- W4312189471 hasConcept C41008148 @default.
- W4312189471 hasConcept C50644808 @default.
- W4312189471 hasConcept C58489278 @default.
- W4312189471 hasConcept C98045186 @default.
- W4312189471 hasConceptScore W4312189471C111919701 @default.
- W4312189471 hasConceptScore W4312189471C11413529 @default.
- W4312189471 hasConceptScore W4312189471C121332964 @default.
- W4312189471 hasConceptScore W4312189471C153294291 @default.
- W4312189471 hasConceptScore W4312189471C154945302 @default.
- W4312189471 hasConceptScore W4312189471C155032097 @default.
- W4312189471 hasConceptScore W4312189471C175202392 @default.
- W4312189471 hasConceptScore W4312189471C177264268 @default.
- W4312189471 hasConceptScore W4312189471C199360897 @default.
- W4312189471 hasConceptScore W4312189471C21080849 @default.
- W4312189471 hasConceptScore W4312189471C2524010 @default.
- W4312189471 hasConceptScore W4312189471C2777211547 @default.
- W4312189471 hasConceptScore W4312189471C2780365114 @default.
- W4312189471 hasConceptScore W4312189471C28719098 @default.
- W4312189471 hasConceptScore W4312189471C33923547 @default.
- W4312189471 hasConceptScore W4312189471C41008148 @default.
- W4312189471 hasConceptScore W4312189471C50644808 @default.
- W4312189471 hasConceptScore W4312189471C58489278 @default.
- W4312189471 hasConceptScore W4312189471C98045186 @default.
- W4312189471 hasIssue "5" @default.
- W4312189471 hasLocation W43121894711 @default.
- W4312189471 hasOpenAccess W4312189471 @default.
- W4312189471 hasPrimaryLocation W43121894711 @default.
- W4312189471 hasRelatedWork W1559431355 @default.
- W4312189471 hasRelatedWork W2096049549 @default.
- W4312189471 hasRelatedWork W2104698839 @default.
- W4312189471 hasRelatedWork W2131836320 @default.
- W4312189471 hasRelatedWork W2368821959 @default.
- W4312189471 hasRelatedWork W2383742469 @default.
- W4312189471 hasRelatedWork W2391384657 @default.
- W4312189471 hasRelatedWork W3048788076 @default.
- W4312189471 hasRelatedWork W4312189471 @default.
- W4312189471 hasRelatedWork W2182757990 @default.
- W4312189471 hasVolume "14" @default.
- W4312189471 isParatext "false" @default.
- W4312189471 isRetracted "false" @default.
- W4312189471 workType "article" @default.