Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312197348> ?p ?o ?g. }
- W4312197348 endingPage "126548" @default.
- W4312197348 startingPage "126548" @default.
- W4312197348 abstract "The heating and Cooling loads are the main contributors to energy consumption in buildings, and predicting them can prevent many potential financial losses in civil engineering projects. Using the benefits of the neural networks, including support vector machine, gated recurrent unit, extreme learning machine, long short-term memory, and shuffled frog leaping algorithm as an optimizer, the present study aims to predict the energy consumption of the building. The empirical data are trained using the selected networks and optimized through a shuffled frog-leaping algorithm. Also, the statistical criteria are analyzed to specify the best network in terms of accuracy and speed. The obtained results and the convergence rate represent the remarkable capability of the shuffled frog leaping algorithm for optimization. According to the statistical results, long short-term memory and support vector machine are introduced as the best neural network for cooling and heating load forecast, respectively. According to the obtained results, for the cooling load prediction, LSTM-SFLA presents the best performance by an R2 of 0.9761. On the other hand, for the heating load prediction, SVR-SFLA has the optimal performance with an R2 of 0.9583. The results indicate that using the SFLA optimizer could assist in improving the prediction performance." @default.
- W4312197348 created "2023-01-04" @default.
- W4312197348 creator A5021918612 @default.
- W4312197348 creator A5026803852 @default.
- W4312197348 creator A5033982342 @default.
- W4312197348 creator A5067604609 @default.
- W4312197348 creator A5068175005 @default.
- W4312197348 creator A5070109697 @default.
- W4312197348 creator A5074942308 @default.
- W4312197348 creator A5086539587 @default.
- W4312197348 date "2023-04-01" @default.
- W4312197348 modified "2023-10-18" @default.
- W4312197348 title "The innovative optimization techniques for forecasting the energy consumption of buildings using the shuffled frog leaping algorithm and different neural networks" @default.
- W4312197348 cites W1982935541 @default.
- W4312197348 cites W2000424045 @default.
- W4312197348 cites W2093269541 @default.
- W4312197348 cites W2338443192 @default.
- W4312197348 cites W2625709058 @default.
- W4312197348 cites W2686419387 @default.
- W4312197348 cites W2795785493 @default.
- W4312197348 cites W2883971393 @default.
- W4312197348 cites W2902533895 @default.
- W4312197348 cites W2910475214 @default.
- W4312197348 cites W2946396870 @default.
- W4312197348 cites W2946503479 @default.
- W4312197348 cites W2968862935 @default.
- W4312197348 cites W2971055541 @default.
- W4312197348 cites W2971430953 @default.
- W4312197348 cites W3010838291 @default.
- W4312197348 cites W3036507077 @default.
- W4312197348 cites W3084901498 @default.
- W4312197348 cites W3113701471 @default.
- W4312197348 cites W3118396091 @default.
- W4312197348 cites W3119323894 @default.
- W4312197348 cites W3122507976 @default.
- W4312197348 cites W3125521657 @default.
- W4312197348 cites W3133253569 @default.
- W4312197348 cites W3133941285 @default.
- W4312197348 cites W3134103628 @default.
- W4312197348 cites W3135585840 @default.
- W4312197348 cites W3152577255 @default.
- W4312197348 cites W3153592874 @default.
- W4312197348 cites W3169620914 @default.
- W4312197348 cites W3171462419 @default.
- W4312197348 cites W3187211979 @default.
- W4312197348 cites W3211891555 @default.
- W4312197348 cites W3215060105 @default.
- W4312197348 cites W4226057327 @default.
- W4312197348 cites W4239510810 @default.
- W4312197348 cites W4313429479 @default.
- W4312197348 doi "https://doi.org/10.1016/j.energy.2022.126548" @default.
- W4312197348 hasPublicationYear "2023" @default.
- W4312197348 type Work @default.
- W4312197348 citedByCount "8" @default.
- W4312197348 countsByYear W43121973482023 @default.
- W4312197348 crossrefType "journal-article" @default.
- W4312197348 hasAuthorship W4312197348A5021918612 @default.
- W4312197348 hasAuthorship W4312197348A5026803852 @default.
- W4312197348 hasAuthorship W4312197348A5033982342 @default.
- W4312197348 hasAuthorship W4312197348A5067604609 @default.
- W4312197348 hasAuthorship W4312197348A5068175005 @default.
- W4312197348 hasAuthorship W4312197348A5070109697 @default.
- W4312197348 hasAuthorship W4312197348A5074942308 @default.
- W4312197348 hasAuthorship W4312197348A5086539587 @default.
- W4312197348 hasConcept C103742991 @default.
- W4312197348 hasConcept C105795698 @default.
- W4312197348 hasConcept C11413529 @default.
- W4312197348 hasConcept C119599485 @default.
- W4312197348 hasConcept C119857082 @default.
- W4312197348 hasConcept C12267149 @default.
- W4312197348 hasConcept C127413603 @default.
- W4312197348 hasConcept C154945302 @default.
- W4312197348 hasConcept C162324750 @default.
- W4312197348 hasConcept C186370098 @default.
- W4312197348 hasConcept C2777303404 @default.
- W4312197348 hasConcept C2780165032 @default.
- W4312197348 hasConcept C2781099182 @default.
- W4312197348 hasConcept C33923547 @default.
- W4312197348 hasConcept C41008148 @default.
- W4312197348 hasConcept C50522688 @default.
- W4312197348 hasConcept C50644808 @default.
- W4312197348 hasConcept C78519656 @default.
- W4312197348 hasConceptScore W4312197348C103742991 @default.
- W4312197348 hasConceptScore W4312197348C105795698 @default.
- W4312197348 hasConceptScore W4312197348C11413529 @default.
- W4312197348 hasConceptScore W4312197348C119599485 @default.
- W4312197348 hasConceptScore W4312197348C119857082 @default.
- W4312197348 hasConceptScore W4312197348C12267149 @default.
- W4312197348 hasConceptScore W4312197348C127413603 @default.
- W4312197348 hasConceptScore W4312197348C154945302 @default.
- W4312197348 hasConceptScore W4312197348C162324750 @default.
- W4312197348 hasConceptScore W4312197348C186370098 @default.
- W4312197348 hasConceptScore W4312197348C2777303404 @default.
- W4312197348 hasConceptScore W4312197348C2780165032 @default.
- W4312197348 hasConceptScore W4312197348C2781099182 @default.
- W4312197348 hasConceptScore W4312197348C33923547 @default.
- W4312197348 hasConceptScore W4312197348C41008148 @default.
- W4312197348 hasConceptScore W4312197348C50522688 @default.