Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312201912> ?p ?o ?g. }
- W4312201912 abstract "Interpreting partial information collected from systems subject to noise is a key problem across scientific disciplines. Theoretical frameworks often focus on the dynamics of variables that result from coarse-graining the internal states of a physical system. However, most experimental apparatuses can only detect a partial set of transitions, while internal states of the physical system are blurred or inaccessible. Here, we consider an observer who records a time series of occurrences of one or several transitions performed by a system, under the assumption that its underlying dynamics is Markovian. We pose the question of how one can use the transitions’ information to make inferences of dynamical, thermodynamical, and biochemical properties. First, elaborating on first-passage time techniques, we derive analytical expressions for the probabilities of consecutive transitions and for the time elapsed between them, which we call intertransition times. Second, we derive a lower bound for the entropy production rate that equals the sum of two non-negative contributions, one due to the statistics of transitions and a second due to the statistics of intertransition times. We also show that when only one current is measured, our estimate still detects irreversibility even in the absence of net currents in the transition time series. Third, we verify our results with numerical simulations using unbiased estimates of entropy production, which we make available as an open-source toolbox. We illustrate the developed framework in experimentally validated biophysical models of kinesin and dynein molecular motors, and in a minimal model for template-directed polymerization. Our numerical results reveal that while entropy production is entailed in the statistics of two successive transitions of the same type (i.e., repeated transitions), the statistics of two different successive transitions (i.e., alternated transitions) can probe the existence of an underlying disorder in the motion of a molecular motor. Taken all together, our results highlight the power of inference from transition statistics ranging from thermodynamic quantities to network-topology properties of Markov processes.10 MoreReceived 26 March 2022Revised 17 August 2022Accepted 29 September 2022DOI:https://doi.org/10.1103/PhysRevX.12.041026Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasBiomolecular dynamicsEntropy productionFluctuation theoremsNonequilibrium statistical mechanicsStochastic processesStochastic thermodynamicsPhysical SystemsMotor proteinsTechniquesFirst passage problemsStatistical PhysicsBiological Physics" @default.
- W4312201912 created "2023-01-04" @default.
- W4312201912 creator A5019587529 @default.
- W4312201912 creator A5021751630 @default.
- W4312201912 creator A5042605982 @default.
- W4312201912 creator A5088697177 @default.
- W4312201912 date "2022-12-07" @default.
- W4312201912 modified "2023-10-14" @default.
- W4312201912 title "What to Learn from a Few Visible Transitions’ Statistics?" @default.
- W4312201912 cites W1527926774 @default.
- W4312201912 cites W1537236879 @default.
- W4312201912 cites W1839291468 @default.
- W4312201912 cites W1897486837 @default.
- W4312201912 cites W1968532084 @default.
- W4312201912 cites W1969950964 @default.
- W4312201912 cites W1976799229 @default.
- W4312201912 cites W1978586665 @default.
- W4312201912 cites W1982003147 @default.
- W4312201912 cites W1986278878 @default.
- W4312201912 cites W1986351812 @default.
- W4312201912 cites W1992331713 @default.
- W4312201912 cites W2001060611 @default.
- W4312201912 cites W2005260658 @default.
- W4312201912 cites W2006362531 @default.
- W4312201912 cites W2006554424 @default.
- W4312201912 cites W2016320357 @default.
- W4312201912 cites W2024794609 @default.
- W4312201912 cites W2026474050 @default.
- W4312201912 cites W2033237792 @default.
- W4312201912 cites W2034130679 @default.
- W4312201912 cites W2048444969 @default.
- W4312201912 cites W2051163683 @default.
- W4312201912 cites W2052391009 @default.
- W4312201912 cites W2056776034 @default.
- W4312201912 cites W2062973231 @default.
- W4312201912 cites W2063734377 @default.
- W4312201912 cites W2065087844 @default.
- W4312201912 cites W2069988973 @default.
- W4312201912 cites W2070302118 @default.
- W4312201912 cites W2077230322 @default.
- W4312201912 cites W2078695144 @default.
- W4312201912 cites W2081432279 @default.
- W4312201912 cites W2082631326 @default.
- W4312201912 cites W2088321333 @default.
- W4312201912 cites W2091965271 @default.
- W4312201912 cites W2092939357 @default.
- W4312201912 cites W2095274124 @default.
- W4312201912 cites W2099395647 @default.
- W4312201912 cites W2110641277 @default.
- W4312201912 cites W2120024499 @default.
- W4312201912 cites W2127878275 @default.
- W4312201912 cites W2133737876 @default.
- W4312201912 cites W2137454803 @default.
- W4312201912 cites W2141314024 @default.
- W4312201912 cites W2143402527 @default.
- W4312201912 cites W2145234478 @default.
- W4312201912 cites W2145519515 @default.
- W4312201912 cites W2146162345 @default.
- W4312201912 cites W2151274733 @default.
- W4312201912 cites W2166053360 @default.
- W4312201912 cites W2166454051 @default.
- W4312201912 cites W2167150894 @default.
- W4312201912 cites W2169594496 @default.
- W4312201912 cites W2170197341 @default.
- W4312201912 cites W2192080376 @default.
- W4312201912 cites W2280197663 @default.
- W4312201912 cites W2283216526 @default.
- W4312201912 cites W2339584655 @default.
- W4312201912 cites W2558165301 @default.
- W4312201912 cites W2564946725 @default.
- W4312201912 cites W2581897991 @default.
- W4312201912 cites W2749063956 @default.
- W4312201912 cites W2751481971 @default.
- W4312201912 cites W2762030022 @default.
- W4312201912 cites W2806379729 @default.
- W4312201912 cites W2891052624 @default.
- W4312201912 cites W2904241962 @default.
- W4312201912 cites W2917445762 @default.
- W4312201912 cites W2921113319 @default.
- W4312201912 cites W2924071838 @default.
- W4312201912 cites W2947171186 @default.
- W4312201912 cites W2957321130 @default.
- W4312201912 cites W2962973598 @default.
- W4312201912 cites W3009235620 @default.
- W4312201912 cites W3010889139 @default.
- W4312201912 cites W3099308141 @default.
- W4312201912 cites W3099511659 @default.
- W4312201912 cites W3099613767 @default.
- W4312201912 cites W3100849680 @default.
- W4312201912 cites W3102395960 @default.
- W4312201912 cites W3103050776 @default.
- W4312201912 cites W3104221885 @default.
- W4312201912 cites W3104418470 @default.
- W4312201912 cites W3105290204 @default.
- W4312201912 cites W3105788277 @default.
- W4312201912 cites W3106508168 @default.
- W4312201912 cites W3134085897 @default.
- W4312201912 cites W3139267667 @default.
- W4312201912 cites W3139515535 @default.
- W4312201912 cites W3157290163 @default.