Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312204529> ?p ?o ?g. }
- W4312204529 endingPage "120932" @default.
- W4312204529 startingPage "120932" @default.
- W4312204529 abstract "The ability to control the risk of soil heavy metal pollution is limited by the inability to accurately depict their spatial distributions and to reasonably delineate the risk zones. To overcome this limitation and develop machine learning methods, a hybrid data-driven method supported by random forest (RF) and fuzzy c-means with the aid of inverse distance weighted interpolation was proposed to delineate and further identify risk zones of soil heavy metal pollution on the basis of 577 soil samples and 12 environmental covariates. The results indicated that, compared to multiple linear regression, RF had a better prediction performance for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, with the corresponding R2 values of 0.86, 0.85, 0.78, 0.85, 0.84, 0.78, 0.79 and 0.76, respectively. The relative concentrations (predicted concentrations divided by risk screening values) of Cd (17.69), Cr (1.38), Hg (0.31), Pb (6.52), and Zn (8.24) were relatively high in the north central part of the study area. There were large differences in the key influencing factors and their contributions among the eight heavy metals. Overall, industrial enterprises (21.60% for As), soil pH (31.60% for Cd), and population (15.50% for Cr) were the key influencing factors for the heavy metals in soil. Four risk zones, including one high risk zone, one medium risk zone, and two low risk zones were delineated and identified based on the characteristics of the eight heavy metals and their influencing factors, and accordingly discriminated risk control strategies were developed. In the high risk zone, it will be necessary to strictly control the discharge of heavy metals from the various industrial enterprises and mines by the adoption of cleaner production practices, centralizedly treat the domestic wastes from residents, substantially reduce the irrigation of polluted river water, and positively remediate the Cd, Cr, and Ni-polluted soil." @default.
- W4312204529 created "2023-01-04" @default.
- W4312204529 creator A5005945085 @default.
- W4312204529 creator A5022238481 @default.
- W4312204529 creator A5029102917 @default.
- W4312204529 creator A5031574868 @default.
- W4312204529 creator A5032223248 @default.
- W4312204529 creator A5048279362 @default.
- W4312204529 creator A5072239400 @default.
- W4312204529 date "2023-02-01" @default.
- W4312204529 modified "2023-10-05" @default.
- W4312204529 title "Delineating and identifying risk zones of soil heavy metal pollution in an industrialized region using machine learning" @default.
- W4312204529 cites W1972782082 @default.
- W4312204529 cites W2047356921 @default.
- W4312204529 cites W2256438753 @default.
- W4312204529 cites W2267752201 @default.
- W4312204529 cites W2345353802 @default.
- W4312204529 cites W2581200314 @default.
- W4312204529 cites W2602874887 @default.
- W4312204529 cites W2604190572 @default.
- W4312204529 cites W2608915174 @default.
- W4312204529 cites W2614791974 @default.
- W4312204529 cites W2755905524 @default.
- W4312204529 cites W2790913225 @default.
- W4312204529 cites W2804541640 @default.
- W4312204529 cites W2887515788 @default.
- W4312204529 cites W2897784844 @default.
- W4312204529 cites W2899025789 @default.
- W4312204529 cites W2900600890 @default.
- W4312204529 cites W2900701933 @default.
- W4312204529 cites W2902329283 @default.
- W4312204529 cites W2903042037 @default.
- W4312204529 cites W2911964244 @default.
- W4312204529 cites W2912121803 @default.
- W4312204529 cites W2923029915 @default.
- W4312204529 cites W2925642511 @default.
- W4312204529 cites W2940364826 @default.
- W4312204529 cites W2946930717 @default.
- W4312204529 cites W2965166403 @default.
- W4312204529 cites W2972784318 @default.
- W4312204529 cites W2973190090 @default.
- W4312204529 cites W2982097326 @default.
- W4312204529 cites W3003814891 @default.
- W4312204529 cites W3006868064 @default.
- W4312204529 cites W3025439369 @default.
- W4312204529 cites W3033742553 @default.
- W4312204529 cites W3040045262 @default.
- W4312204529 cites W3047333133 @default.
- W4312204529 cites W3085485679 @default.
- W4312204529 cites W3108363454 @default.
- W4312204529 cites W3113334052 @default.
- W4312204529 cites W3127928328 @default.
- W4312204529 cites W3130293662 @default.
- W4312204529 cites W3134542792 @default.
- W4312204529 cites W3134900177 @default.
- W4312204529 cites W3139274269 @default.
- W4312204529 cites W3164398907 @default.
- W4312204529 cites W3173621781 @default.
- W4312204529 cites W3185287488 @default.
- W4312204529 cites W3201847245 @default.
- W4312204529 cites W3212144428 @default.
- W4312204529 cites W4200094090 @default.
- W4312204529 cites W4200466892 @default.
- W4312204529 cites W4211250212 @default.
- W4312204529 cites W4212772811 @default.
- W4312204529 cites W4220672720 @default.
- W4312204529 cites W4221059529 @default.
- W4312204529 cites W4242405356 @default.
- W4312204529 cites W4282018720 @default.
- W4312204529 cites W4292814254 @default.
- W4312204529 doi "https://doi.org/10.1016/j.envpol.2022.120932" @default.
- W4312204529 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36566920" @default.
- W4312204529 hasPublicationYear "2023" @default.
- W4312204529 type Work @default.
- W4312204529 citedByCount "4" @default.
- W4312204529 countsByYear W43122045292023 @default.
- W4312204529 crossrefType "journal-article" @default.
- W4312204529 hasAuthorship W4312204529A5005945085 @default.
- W4312204529 hasAuthorship W4312204529A5022238481 @default.
- W4312204529 hasAuthorship W4312204529A5029102917 @default.
- W4312204529 hasAuthorship W4312204529A5031574868 @default.
- W4312204529 hasAuthorship W4312204529A5032223248 @default.
- W4312204529 hasAuthorship W4312204529A5048279362 @default.
- W4312204529 hasAuthorship W4312204529A5072239400 @default.
- W4312204529 hasConcept C105795698 @default.
- W4312204529 hasConcept C107872376 @default.
- W4312204529 hasConcept C119857082 @default.
- W4312204529 hasConcept C159390177 @default.
- W4312204529 hasConcept C159750122 @default.
- W4312204529 hasConcept C169258074 @default.
- W4312204529 hasConcept C185592680 @default.
- W4312204529 hasConcept C18903297 @default.
- W4312204529 hasConcept C203332170 @default.
- W4312204529 hasConcept C205203396 @default.
- W4312204529 hasConcept C2776053758 @default.
- W4312204529 hasConcept C2908647359 @default.
- W4312204529 hasConcept C33923547 @default.
- W4312204529 hasConcept C39432304 @default.