Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312213344> ?p ?o ?g. }
- W4312213344 abstract "Abstract Objective Lower urinary tract symptoms (LUTS), such as urinary urgency, frequency, and incontinence, affect the majority of the population, causing substantial morbidity, yet few receive effective care. Sizeable symptomatic overlap between LUTS categories leads to high rates of misdiagnosis. To improve diagnostic accuracy, we sought to employ machine learning approaches to LUTS categorization to generate diagnostic groupings based on patient-reported clinical data, creating a novel tool for diagnosis of patients with voiding complaints. Methods Questionnaire responses in a Development Dataset of 514 female subjects were used for model development, identifying 4 major clusters and 9 specific phenotypes of LUTS using agglomerative hierarchical clustering. Each cluster and phenotype was assigned a clinical identity consistent with recognized causes of voiding dysfunction by the consensus of two urologic specialists. Then, a random forest classifier was trained to assign unseen patients into these phenotypes. That model was then applied to a Validation Dataset of 571 additional subjects to confirm the diagnostic algorithm. Results This data-driven, hierarchical clustering approach captured overlapping symptoms inherent in typical patients, recognizing common uncomplicated diagnoses (i.e., overactive bladder) as well as several underrecognized diagnostic categories (i.e., myofascial pelvic pain). A diagnostic algorithm derived by supervised machine learning to assign unseen subjects into these phenotypes demonstrated good reproducibillty of the phenotypes and their symptomatic patterns in an independent Validation Dataset. Conclusions We describe the generation of a machine learning algorithm relying only on validated, patient-reported symptoms for diagnostic classification. Given a growing physician shortage and increasing challenges for patients accessing specialist care, this type of digital technology holds great potential to improve the recognition and diagnosis of functional urologic conditions." @default.
- W4312213344 created "2023-01-04" @default.
- W4312213344 creator A5008687971 @default.
- W4312213344 creator A5011628221 @default.
- W4312213344 creator A5016976949 @default.
- W4312213344 creator A5039524249 @default.
- W4312213344 creator A5066570769 @default.
- W4312213344 creator A5084679639 @default.
- W4312213344 date "2022-12-27" @default.
- W4312213344 modified "2023-09-30" @default.
- W4312213344 title "Development and Validation of a Machine Learning Algorithm to Classify Lower Urinary Tract Symptoms" @default.
- W4312213344 cites W1590256680 @default.
- W4312213344 cites W1972477468 @default.
- W4312213344 cites W1982116117 @default.
- W4312213344 cites W1984902625 @default.
- W4312213344 cites W1987971958 @default.
- W4312213344 cites W2003618445 @default.
- W4312213344 cites W2016381774 @default.
- W4312213344 cites W2018428796 @default.
- W4312213344 cites W2019325153 @default.
- W4312213344 cites W2051893541 @default.
- W4312213344 cites W2068508767 @default.
- W4312213344 cites W2069350481 @default.
- W4312213344 cites W2084355008 @default.
- W4312213344 cites W2101807845 @default.
- W4312213344 cites W2104101824 @default.
- W4312213344 cites W2120337742 @default.
- W4312213344 cites W2132963039 @default.
- W4312213344 cites W2162657456 @default.
- W4312213344 cites W2168556036 @default.
- W4312213344 cites W2172394567 @default.
- W4312213344 cites W2329809871 @default.
- W4312213344 cites W2600937724 @default.
- W4312213344 cites W2831366952 @default.
- W4312213344 cites W2893350126 @default.
- W4312213344 cites W2960548474 @default.
- W4312213344 cites W3130163983 @default.
- W4312213344 cites W3136310667 @default.
- W4312213344 cites W3173853027 @default.
- W4312213344 cites W3181411753 @default.
- W4312213344 cites W3213466466 @default.
- W4312213344 cites W4213351464 @default.
- W4312213344 cites W4229440144 @default.
- W4312213344 cites W4281695251 @default.
- W4312213344 cites W4286231567 @default.
- W4312213344 cites W94668587 @default.
- W4312213344 doi "https://doi.org/10.1101/2022.12.25.22283168" @default.
- W4312213344 hasPublicationYear "2022" @default.
- W4312213344 type Work @default.
- W4312213344 citedByCount "0" @default.
- W4312213344 crossrefType "posted-content" @default.
- W4312213344 hasAuthorship W4312213344A5008687971 @default.
- W4312213344 hasAuthorship W4312213344A5011628221 @default.
- W4312213344 hasAuthorship W4312213344A5016976949 @default.
- W4312213344 hasAuthorship W4312213344A5039524249 @default.
- W4312213344 hasAuthorship W4312213344A5066570769 @default.
- W4312213344 hasAuthorship W4312213344A5084679639 @default.
- W4312213344 hasBestOaLocation W43122133441 @default.
- W4312213344 hasConcept C11413529 @default.
- W4312213344 hasConcept C119857082 @default.
- W4312213344 hasConcept C121608353 @default.
- W4312213344 hasConcept C126322002 @default.
- W4312213344 hasConcept C142724271 @default.
- W4312213344 hasConcept C154945302 @default.
- W4312213344 hasConcept C204787440 @default.
- W4312213344 hasConcept C2776235491 @default.
- W4312213344 hasConcept C2778941218 @default.
- W4312213344 hasConcept C2779478474 @default.
- W4312213344 hasConcept C2908647359 @default.
- W4312213344 hasConcept C41008148 @default.
- W4312213344 hasConcept C534262118 @default.
- W4312213344 hasConcept C71924100 @default.
- W4312213344 hasConcept C73555534 @default.
- W4312213344 hasConcept C92835128 @default.
- W4312213344 hasConcept C94124525 @default.
- W4312213344 hasConcept C99454951 @default.
- W4312213344 hasConceptScore W4312213344C11413529 @default.
- W4312213344 hasConceptScore W4312213344C119857082 @default.
- W4312213344 hasConceptScore W4312213344C121608353 @default.
- W4312213344 hasConceptScore W4312213344C126322002 @default.
- W4312213344 hasConceptScore W4312213344C142724271 @default.
- W4312213344 hasConceptScore W4312213344C154945302 @default.
- W4312213344 hasConceptScore W4312213344C204787440 @default.
- W4312213344 hasConceptScore W4312213344C2776235491 @default.
- W4312213344 hasConceptScore W4312213344C2778941218 @default.
- W4312213344 hasConceptScore W4312213344C2779478474 @default.
- W4312213344 hasConceptScore W4312213344C2908647359 @default.
- W4312213344 hasConceptScore W4312213344C41008148 @default.
- W4312213344 hasConceptScore W4312213344C534262118 @default.
- W4312213344 hasConceptScore W4312213344C71924100 @default.
- W4312213344 hasConceptScore W4312213344C73555534 @default.
- W4312213344 hasConceptScore W4312213344C92835128 @default.
- W4312213344 hasConceptScore W4312213344C94124525 @default.
- W4312213344 hasConceptScore W4312213344C99454951 @default.
- W4312213344 hasLocation W43122133441 @default.
- W4312213344 hasOpenAccess W4312213344 @default.
- W4312213344 hasPrimaryLocation W43122133441 @default.
- W4312213344 hasRelatedWork W1517835453 @default.
- W4312213344 hasRelatedWork W2123248011 @default.
- W4312213344 hasRelatedWork W2266028413 @default.