Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312232135> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4312232135 endingPage "88" @default.
- W4312232135 startingPage "70" @default.
- W4312232135 abstract "Nowadays, heart disease is the major cause of deaths globally. According to a survey conducted by the World Health Organization, almost 18 million people die of heart diseases (or cardiovascular diseases) every day. So, there should be a system for early detection and prevention of heart disease. Detection of heart disease mostly depends on the huge pathological and clinical data that is quite complex. So, researchers and other medical professionals are showing keen interest in accurate prediction of heart disease. Heart disease is a general term for a large number of medical conditions related to heart and one of them is the coronary heart disease (CHD). Coronary heart disease is caused by the amassing of plaque on the artery walls. In this paper, various machine learning base and ensemble classifiers have been applied on heart disease dataset for efficient prediction of coronary heart disease. Various machine learning classifiers that have been employed include k-nearest neighbor, multilayer perceptron, multinomial naïve bayes, logistic regression, decision tree, random forest and support vector machine classifiers. Ensemble classifiers that have been used include majority voting, weighted average, bagging and boosting classifiers. The dataset used in this study is obtained from the Framingham Heart Study which is a long-term, ongoing cardiovascular study of people from the Framingham city in Massachusetts, USA. To evaluate the performance of the classifiers, various evaluation metrics including accuracy, precision, recall and f1 score have been used. According to our results, the best accuracy was achieved by logistic regression, random forest, majority voting, weighted average and bagging classifiers but the highest accuracy among these was achieved using weighted average ensemble classifier." @default.
- W4312232135 created "2023-01-04" @default.
- W4312232135 creator A5025298342 @default.
- W4312232135 creator A5055951031 @default.
- W4312232135 creator A5072591163 @default.
- W4312232135 date "2022-03-30" @default.
- W4312232135 modified "2023-09-30" @default.
- W4312232135 title "IMPROVING CORONARY HEART DISEASE PREDICTION BY OUTLIER ELIMINATION" @default.
- W4312232135 cites W2037984755 @default.
- W4312232135 cites W2316314003 @default.
- W4312232135 cites W2569214105 @default.
- W4312232135 cites W2786146747 @default.
- W4312232135 cites W2786760387 @default.
- W4312232135 cites W2793384337 @default.
- W4312232135 cites W2802899394 @default.
- W4312232135 cites W2805892602 @default.
- W4312232135 cites W2888556188 @default.
- W4312232135 cites W2889131842 @default.
- W4312232135 cites W2902620820 @default.
- W4312232135 cites W2904426934 @default.
- W4312232135 cites W2907716967 @default.
- W4312232135 cites W2920154870 @default.
- W4312232135 cites W2921518958 @default.
- W4312232135 cites W2951695222 @default.
- W4312232135 cites W2954788759 @default.
- W4312232135 cites W2980205701 @default.
- W4312232135 cites W2998803808 @default.
- W4312232135 cites W3017118041 @default.
- W4312232135 cites W3033065381 @default.
- W4312232135 cites W3197048008 @default.
- W4312232135 doi "https://doi.org/10.35784/acs-2022-6" @default.
- W4312232135 hasPublicationYear "2022" @default.
- W4312232135 type Work @default.
- W4312232135 citedByCount "0" @default.
- W4312232135 crossrefType "journal-article" @default.
- W4312232135 hasAuthorship W4312232135A5025298342 @default.
- W4312232135 hasAuthorship W4312232135A5055951031 @default.
- W4312232135 hasAuthorship W4312232135A5072591163 @default.
- W4312232135 hasBestOaLocation W43122321351 @default.
- W4312232135 hasConcept C111815664 @default.
- W4312232135 hasConcept C11783203 @default.
- W4312232135 hasConcept C119857082 @default.
- W4312232135 hasConcept C12267149 @default.
- W4312232135 hasConcept C126322002 @default.
- W4312232135 hasConcept C151956035 @default.
- W4312232135 hasConcept C154945302 @default.
- W4312232135 hasConcept C169258074 @default.
- W4312232135 hasConcept C2779134260 @default.
- W4312232135 hasConcept C2780074459 @default.
- W4312232135 hasConcept C41008148 @default.
- W4312232135 hasConcept C45942800 @default.
- W4312232135 hasConcept C46686674 @default.
- W4312232135 hasConcept C52001869 @default.
- W4312232135 hasConcept C71924100 @default.
- W4312232135 hasConcept C84525736 @default.
- W4312232135 hasConceptScore W4312232135C111815664 @default.
- W4312232135 hasConceptScore W4312232135C11783203 @default.
- W4312232135 hasConceptScore W4312232135C119857082 @default.
- W4312232135 hasConceptScore W4312232135C12267149 @default.
- W4312232135 hasConceptScore W4312232135C126322002 @default.
- W4312232135 hasConceptScore W4312232135C151956035 @default.
- W4312232135 hasConceptScore W4312232135C154945302 @default.
- W4312232135 hasConceptScore W4312232135C169258074 @default.
- W4312232135 hasConceptScore W4312232135C2779134260 @default.
- W4312232135 hasConceptScore W4312232135C2780074459 @default.
- W4312232135 hasConceptScore W4312232135C41008148 @default.
- W4312232135 hasConceptScore W4312232135C45942800 @default.
- W4312232135 hasConceptScore W4312232135C46686674 @default.
- W4312232135 hasConceptScore W4312232135C52001869 @default.
- W4312232135 hasConceptScore W4312232135C71924100 @default.
- W4312232135 hasConceptScore W4312232135C84525736 @default.
- W4312232135 hasIssue "1" @default.
- W4312232135 hasLocation W43122321351 @default.
- W4312232135 hasOpenAccess W4312232135 @default.
- W4312232135 hasPrimaryLocation W43122321351 @default.
- W4312232135 hasRelatedWork W3100297620 @default.
- W4312232135 hasRelatedWork W3193372619 @default.
- W4312232135 hasRelatedWork W3210696866 @default.
- W4312232135 hasRelatedWork W4281846282 @default.
- W4312232135 hasRelatedWork W4293069612 @default.
- W4312232135 hasRelatedWork W4319718059 @default.
- W4312232135 hasRelatedWork W4321636153 @default.
- W4312232135 hasRelatedWork W4377964522 @default.
- W4312232135 hasRelatedWork W4383535405 @default.
- W4312232135 hasRelatedWork W4385728794 @default.
- W4312232135 hasVolume "18" @default.
- W4312232135 isParatext "false" @default.
- W4312232135 isRetracted "false" @default.
- W4312232135 workType "article" @default.