Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312235138> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4312235138 endingPage "123846" @default.
- W4312235138 startingPage "123835" @default.
- W4312235138 abstract "This work investigates a data-driven approach to detect the number of incoming signals for a lens antenna array (LAA). First, the energy-focusing property of an electromagnetic (EM) lens is utilized to generate an input spectrum, which can be used to enumerate both the multipath and independent signals. Next, we present the deep learning (DL)-assisted sharp peak recognition method referred to as the power spectrum-based convolutional neural network (PSCNet). Unlike classical techniques, such as constant false alarm rate (CFAR) detection, this data-driven detector can count received signals adaptively based on the LAA power spectrum without requiring any initial configurations. In addition, the PSCNet outperforms other state-of-the-art subspace-based detectors, even under challenging conditions, such as a low signal-to-noise ratio (SNR), a small observation size, and angular ambiguity. For the training phase, we propose a pretrained-model reusing strategy and an input pre-processing approach referred to as the power spectrum shortening (PSS) to alleviate the training burden and achieve lower complexity compared to fully retraining all isolated networks. The simulation results demonstrate that our proposed sharp peak-recognition algorithm not only accomplishes the improved signal enumeration performance but also requires lower computational resources than other subspace-based approaches." @default.
- W4312235138 created "2023-01-04" @default.
- W4312235138 creator A5063848301 @default.
- W4312235138 creator A5086517987 @default.
- W4312235138 date "2022-01-01" @default.
- W4312235138 modified "2023-09-25" @default.
- W4312235138 title "Deep Learning-Aided Signal Enumeration for Lens Antenna Array" @default.
- W4312235138 cites W1994477821 @default.
- W4312235138 cites W2027711878 @default.
- W4312235138 cites W2071197225 @default.
- W4312235138 cites W2096710051 @default.
- W4312235138 cites W2112583420 @default.
- W4312235138 cites W2115309662 @default.
- W4312235138 cites W2125779688 @default.
- W4312235138 cites W2127271355 @default.
- W4312235138 cites W2136274821 @default.
- W4312235138 cites W2142635246 @default.
- W4312235138 cites W2320207303 @default.
- W4312235138 cites W2323325980 @default.
- W4312235138 cites W2560216420 @default.
- W4312235138 cites W2757890189 @default.
- W4312235138 cites W2940696759 @default.
- W4312235138 cites W2963550795 @default.
- W4312235138 cites W2983410381 @default.
- W4312235138 cites W2989743402 @default.
- W4312235138 cites W3049280186 @default.
- W4312235138 cites W3096952481 @default.
- W4312235138 cites W3102628653 @default.
- W4312235138 cites W3119315185 @default.
- W4312235138 cites W4205896963 @default.
- W4312235138 cites W4290996979 @default.
- W4312235138 cites W836396136 @default.
- W4312235138 doi "https://doi.org/10.1109/access.2022.3224608" @default.
- W4312235138 hasPublicationYear "2022" @default.
- W4312235138 type Work @default.
- W4312235138 citedByCount "1" @default.
- W4312235138 countsByYear W43122351382023 @default.
- W4312235138 crossrefType "journal-article" @default.
- W4312235138 hasAuthorship W4312235138A5063848301 @default.
- W4312235138 hasAuthorship W4312235138A5086517987 @default.
- W4312235138 hasBestOaLocation W43122351381 @default.
- W4312235138 hasConcept C11413529 @default.
- W4312235138 hasConcept C115961682 @default.
- W4312235138 hasConcept C13944312 @default.
- W4312235138 hasConcept C154945302 @default.
- W4312235138 hasConcept C199360897 @default.
- W4312235138 hasConcept C21822782 @default.
- W4312235138 hasConcept C2779843651 @default.
- W4312235138 hasConcept C32834561 @default.
- W4312235138 hasConcept C41008148 @default.
- W4312235138 hasConcept C76155785 @default.
- W4312235138 hasConcept C77052588 @default.
- W4312235138 hasConcept C81363708 @default.
- W4312235138 hasConcept C94915269 @default.
- W4312235138 hasConcept C99498987 @default.
- W4312235138 hasConceptScore W4312235138C11413529 @default.
- W4312235138 hasConceptScore W4312235138C115961682 @default.
- W4312235138 hasConceptScore W4312235138C13944312 @default.
- W4312235138 hasConceptScore W4312235138C154945302 @default.
- W4312235138 hasConceptScore W4312235138C199360897 @default.
- W4312235138 hasConceptScore W4312235138C21822782 @default.
- W4312235138 hasConceptScore W4312235138C2779843651 @default.
- W4312235138 hasConceptScore W4312235138C32834561 @default.
- W4312235138 hasConceptScore W4312235138C41008148 @default.
- W4312235138 hasConceptScore W4312235138C76155785 @default.
- W4312235138 hasConceptScore W4312235138C77052588 @default.
- W4312235138 hasConceptScore W4312235138C81363708 @default.
- W4312235138 hasConceptScore W4312235138C94915269 @default.
- W4312235138 hasConceptScore W4312235138C99498987 @default.
- W4312235138 hasFunder F4320322120 @default.
- W4312235138 hasLocation W43122351381 @default.
- W4312235138 hasLocation W43122351382 @default.
- W4312235138 hasOpenAccess W4312235138 @default.
- W4312235138 hasPrimaryLocation W43122351381 @default.
- W4312235138 hasRelatedWork W1566605096 @default.
- W4312235138 hasRelatedWork W2007266074 @default.
- W4312235138 hasRelatedWork W2122453052 @default.
- W4312235138 hasRelatedWork W2357347836 @default.
- W4312235138 hasRelatedWork W2394472650 @default.
- W4312235138 hasRelatedWork W2539551679 @default.
- W4312235138 hasRelatedWork W2969558369 @default.
- W4312235138 hasRelatedWork W3120598513 @default.
- W4312235138 hasRelatedWork W4249590934 @default.
- W4312235138 hasRelatedWork W4316661040 @default.
- W4312235138 hasVolume "10" @default.
- W4312235138 isParatext "false" @default.
- W4312235138 isRetracted "false" @default.
- W4312235138 workType "article" @default.