Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312238175> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4312238175 endingPage "227" @default.
- W4312238175 startingPage "215" @default.
- W4312238175 abstract "Water quality measurement and potability for human residents are critical for health concerns in smart cities. Citizens are perplexed by data about the quality of their drinking water derived from chemical measurements. As a result, data on water potability derived from chemical sensor values must be interpreted prior to being made publicly available. This paper proposed an edge-cloud ubiquitous sensor network for low-cost water quality measurement to supplement existing IoT-based infrastructure. Machine learning algorithms are applied to a dataset containing eight fields related to water potability. Following that, a total of 16 machine learning algorithms for potability prediction were compiled, including 11 shallow learning algorithms and 5 deep learning algorithms. The performance of multiple machine learning algorithms for determining the potability of water based on chemical and laboratory measurements was compared. These results were then compared to those obtained using deep learning algorithms such as ANN, CNN-Resnet, and CNN-LSTM. CNN-Batch Normalization, the most accurate of these algorithms, achieved a maximum testing accuracy of 85.03%." @default.
- W4312238175 created "2023-01-04" @default.
- W4312238175 creator A5000877886 @default.
- W4312238175 creator A5003316171 @default.
- W4312238175 creator A5006587638 @default.
- W4312238175 creator A5046026273 @default.
- W4312238175 creator A5047994728 @default.
- W4312238175 date "2022-01-01" @default.
- W4312238175 modified "2023-09-26" @default.
- W4312238175 title "Assessment of Water Quality in Smart City Environment Leveraging ML-IoT" @default.
- W4312238175 cites W112589754 @default.
- W4312238175 cites W2201216095 @default.
- W4312238175 cites W2782478410 @default.
- W4312238175 cites W2782982918 @default.
- W4312238175 cites W2785103246 @default.
- W4312238175 cites W2895030146 @default.
- W4312238175 cites W2902325193 @default.
- W4312238175 cites W2930669685 @default.
- W4312238175 cites W2933878133 @default.
- W4312238175 cites W2970835038 @default.
- W4312238175 cites W3003165758 @default.
- W4312238175 cites W3015811708 @default.
- W4312238175 cites W3074182698 @default.
- W4312238175 cites W3110142540 @default.
- W4312238175 cites W3158231001 @default.
- W4312238175 cites W3158864960 @default.
- W4312238175 cites W4245008047 @default.
- W4312238175 doi "https://doi.org/10.1007/978-981-19-2445-3_14" @default.
- W4312238175 hasPublicationYear "2022" @default.
- W4312238175 type Work @default.
- W4312238175 citedByCount "0" @default.
- W4312238175 crossrefType "book-chapter" @default.
- W4312238175 hasAuthorship W4312238175A5000877886 @default.
- W4312238175 hasAuthorship W4312238175A5003316171 @default.
- W4312238175 hasAuthorship W4312238175A5006587638 @default.
- W4312238175 hasAuthorship W4312238175A5046026273 @default.
- W4312238175 hasAuthorship W4312238175A5047994728 @default.
- W4312238175 hasConcept C108583219 @default.
- W4312238175 hasConcept C111919701 @default.
- W4312238175 hasConcept C11413529 @default.
- W4312238175 hasConcept C119857082 @default.
- W4312238175 hasConcept C136886441 @default.
- W4312238175 hasConcept C144024400 @default.
- W4312238175 hasConcept C149635348 @default.
- W4312238175 hasConcept C154945302 @default.
- W4312238175 hasConcept C18903297 @default.
- W4312238175 hasConcept C19165224 @default.
- W4312238175 hasConcept C2780797713 @default.
- W4312238175 hasConcept C41008148 @default.
- W4312238175 hasConcept C79974875 @default.
- W4312238175 hasConcept C81860439 @default.
- W4312238175 hasConcept C86803240 @default.
- W4312238175 hasConceptScore W4312238175C108583219 @default.
- W4312238175 hasConceptScore W4312238175C111919701 @default.
- W4312238175 hasConceptScore W4312238175C11413529 @default.
- W4312238175 hasConceptScore W4312238175C119857082 @default.
- W4312238175 hasConceptScore W4312238175C136886441 @default.
- W4312238175 hasConceptScore W4312238175C144024400 @default.
- W4312238175 hasConceptScore W4312238175C149635348 @default.
- W4312238175 hasConceptScore W4312238175C154945302 @default.
- W4312238175 hasConceptScore W4312238175C18903297 @default.
- W4312238175 hasConceptScore W4312238175C19165224 @default.
- W4312238175 hasConceptScore W4312238175C2780797713 @default.
- W4312238175 hasConceptScore W4312238175C41008148 @default.
- W4312238175 hasConceptScore W4312238175C79974875 @default.
- W4312238175 hasConceptScore W4312238175C81860439 @default.
- W4312238175 hasConceptScore W4312238175C86803240 @default.
- W4312238175 hasLocation W43122381751 @default.
- W4312238175 hasOpenAccess W4312238175 @default.
- W4312238175 hasPrimaryLocation W43122381751 @default.
- W4312238175 hasRelatedWork W2922457425 @default.
- W4312238175 hasRelatedWork W3014300295 @default.
- W4312238175 hasRelatedWork W3164822677 @default.
- W4312238175 hasRelatedWork W4223943233 @default.
- W4312238175 hasRelatedWork W4225161397 @default.
- W4312238175 hasRelatedWork W4250304930 @default.
- W4312238175 hasRelatedWork W4309045103 @default.
- W4312238175 hasRelatedWork W4312200629 @default.
- W4312238175 hasRelatedWork W4360585206 @default.
- W4312238175 hasRelatedWork W4364306694 @default.
- W4312238175 isParatext "false" @default.
- W4312238175 isRetracted "false" @default.
- W4312238175 workType "book-chapter" @default.