Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312241010> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4312241010 abstract "Machine learning has become a popular approach for automatic detection of specific patterns. However, each learning algorithm could have its own advantages and disadvantages for dealing with special types of data, e.g. heuristic algorithms could generally lead to the production of biased classifiers, especially when learning from a small data sample that is unlikely to represent a full population. In order to address the above issue, researchers have been motivated to develop ensemble learning approaches for combining individual classifiers, towards reducing the bias of classifiers and thus advancing the classification performance. In this paper, we propose a deep fusion network based ensemble learning approach, which aims to create more complex ensembles and to achieve a strategic combination of the existing rules of fusion (e.g. majority vote, mean, median and max) in a layer-by-layer processing manner, rather than simply using a single fusion rule. The proposed ensemble learning approach is used for a special type of detection tasks, which involves one class as the target class and the other class as the default class. The performance of the proposed ensemble learning approach is evaluated using 6 UCI data sets and the results show that the proposed ensemble learning approach consistently performs very close to or better than the state-of-the art approaches of individual and ensemble learning, while the individual classifiers and the other types of ensembles varied in their performance on different data sets." @default.
- W4312241010 created "2023-01-04" @default.
- W4312241010 creator A5015220550 @default.
- W4312241010 creator A5019708503 @default.
- W4312241010 creator A5038837596 @default.
- W4312241010 creator A5044347936 @default.
- W4312241010 creator A5087592842 @default.
- W4312241010 date "2022-09-09" @default.
- W4312241010 modified "2023-10-01" @default.
- W4312241010 title "Deep Fusion Network based Ensemble Learning Approach for Detection Intensive Classification" @default.
- W4312241010 cites W2016648380 @default.
- W4312241010 cites W2038705219 @default.
- W4312241010 cites W2113242816 @default.
- W4312241010 cites W2122558050 @default.
- W4312241010 cites W2126297944 @default.
- W4312241010 cites W2158275940 @default.
- W4312241010 cites W2158869137 @default.
- W4312241010 cites W2160767978 @default.
- W4312241010 cites W2164568552 @default.
- W4312241010 cites W2167055186 @default.
- W4312241010 cites W2487087946 @default.
- W4312241010 cites W2620423593 @default.
- W4312241010 cites W2883828728 @default.
- W4312241010 cites W2936772191 @default.
- W4312241010 cites W2948009788 @default.
- W4312241010 cites W4205431832 @default.
- W4312241010 cites W4212883601 @default.
- W4312241010 cites W4232478844 @default.
- W4312241010 doi "https://doi.org/10.1109/icwapr56446.2022.9947146" @default.
- W4312241010 hasPublicationYear "2022" @default.
- W4312241010 type Work @default.
- W4312241010 citedByCount "0" @default.
- W4312241010 crossrefType "proceedings-article" @default.
- W4312241010 hasAuthorship W4312241010A5015220550 @default.
- W4312241010 hasAuthorship W4312241010A5019708503 @default.
- W4312241010 hasAuthorship W4312241010A5038837596 @default.
- W4312241010 hasAuthorship W4312241010A5044347936 @default.
- W4312241010 hasAuthorship W4312241010A5087592842 @default.
- W4312241010 hasConcept C108583219 @default.
- W4312241010 hasConcept C119857082 @default.
- W4312241010 hasConcept C124101348 @default.
- W4312241010 hasConcept C154945302 @default.
- W4312241010 hasConcept C173801870 @default.
- W4312241010 hasConcept C2777212361 @default.
- W4312241010 hasConcept C41008148 @default.
- W4312241010 hasConcept C45942800 @default.
- W4312241010 hasConceptScore W4312241010C108583219 @default.
- W4312241010 hasConceptScore W4312241010C119857082 @default.
- W4312241010 hasConceptScore W4312241010C124101348 @default.
- W4312241010 hasConceptScore W4312241010C154945302 @default.
- W4312241010 hasConceptScore W4312241010C173801870 @default.
- W4312241010 hasConceptScore W4312241010C2777212361 @default.
- W4312241010 hasConceptScore W4312241010C41008148 @default.
- W4312241010 hasConceptScore W4312241010C45942800 @default.
- W4312241010 hasFunder F4320321001 @default.
- W4312241010 hasLocation W43122410101 @default.
- W4312241010 hasOpenAccess W4312241010 @default.
- W4312241010 hasPrimaryLocation W43122410101 @default.
- W4312241010 hasRelatedWork W2810053714 @default.
- W4312241010 hasRelatedWork W2950066684 @default.
- W4312241010 hasRelatedWork W3136979370 @default.
- W4312241010 hasRelatedWork W3158264953 @default.
- W4312241010 hasRelatedWork W3162132941 @default.
- W4312241010 hasRelatedWork W3200098538 @default.
- W4312241010 hasRelatedWork W4220785415 @default.
- W4312241010 hasRelatedWork W4298388782 @default.
- W4312241010 hasRelatedWork W4308112567 @default.
- W4312241010 hasRelatedWork W4310989423 @default.
- W4312241010 isParatext "false" @default.
- W4312241010 isRetracted "false" @default.
- W4312241010 workType "article" @default.