Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312262803> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4312262803 abstract "Autonomous vehicles (AVs) are a potential technology for improving safety and driving efficiency in intelligent transportation systems (ITSs). However, AVs are subject to various cyber-attacks, comprising denial-of-service, spoofing, sniffing, and cross-site scripting. To overcome the security issues in AV, this paper proposed an intelligent framework that impersonates the intrusion detection system (IDS) that intelligently classifies malicious and non-malicious data requests of AVs. For that, we utilized ensemble-based machine learning classifiers, such as decision tree, random forest, extra tree, XGboost, K-nearest neighbor, and support vector machine (SVM), to train them on different attacks and simultaneously use their learning for classification. The proposed model is bifurcated into different phases of machine learning, like data collection, pre-processing, and prediction. Finally, we evaluate the ensemble models using different evaluation metrics, such as accuracy, precision, recall, and f1-score. XGBoost outperforms other classifiers in terms of accuracy, i.e., 98.57%, which benefits from attaining a high detection rate and low computational cost at the same time for the AV systems." @default.
- W4312262803 created "2023-01-04" @default.
- W4312262803 creator A5044414974 @default.
- W4312262803 creator A5052903362 @default.
- W4312262803 creator A5053527968 @default.
- W4312262803 creator A5073652793 @default.
- W4312262803 creator A5089077811 @default.
- W4312262803 date "2022-09-14" @default.
- W4312262803 modified "2023-10-01" @default.
- W4312262803 title "Ensemble Learning-based Intrusion Detection System for Autonomous Vehicle" @default.
- W4312262803 cites W2133854595 @default.
- W4312262803 cites W2545810962 @default.
- W4312262803 cites W2744164410 @default.
- W4312262803 cites W2772709151 @default.
- W4312262803 cites W2959120033 @default.
- W4312262803 cites W2980210295 @default.
- W4312262803 cites W3002224656 @default.
- W4312262803 cites W3033672530 @default.
- W4312262803 cites W3047940505 @default.
- W4312262803 cites W3133130272 @default.
- W4312262803 cites W3191441915 @default.
- W4312262803 cites W3206212757 @default.
- W4312262803 cites W3209536146 @default.
- W4312262803 cites W4226418291 @default.
- W4312262803 doi "https://doi.org/10.1109/sciot56583.2022.9953697" @default.
- W4312262803 hasPublicationYear "2022" @default.
- W4312262803 type Work @default.
- W4312262803 citedByCount "3" @default.
- W4312262803 countsByYear W43122628032022 @default.
- W4312262803 countsByYear W43122628032023 @default.
- W4312262803 crossrefType "proceedings-article" @default.
- W4312262803 hasAuthorship W4312262803A5044414974 @default.
- W4312262803 hasAuthorship W4312262803A5052903362 @default.
- W4312262803 hasAuthorship W4312262803A5053527968 @default.
- W4312262803 hasAuthorship W4312262803A5073652793 @default.
- W4312262803 hasAuthorship W4312262803A5089077811 @default.
- W4312262803 hasConcept C110875604 @default.
- W4312262803 hasConcept C119857082 @default.
- W4312262803 hasConcept C12267149 @default.
- W4312262803 hasConcept C124101348 @default.
- W4312262803 hasConcept C136764020 @default.
- W4312262803 hasConcept C154945302 @default.
- W4312262803 hasConcept C167900197 @default.
- W4312262803 hasConcept C169258074 @default.
- W4312262803 hasConcept C35525427 @default.
- W4312262803 hasConcept C38652104 @default.
- W4312262803 hasConcept C38822068 @default.
- W4312262803 hasConcept C41008148 @default.
- W4312262803 hasConcept C45942800 @default.
- W4312262803 hasConcept C84525736 @default.
- W4312262803 hasConceptScore W4312262803C110875604 @default.
- W4312262803 hasConceptScore W4312262803C119857082 @default.
- W4312262803 hasConceptScore W4312262803C12267149 @default.
- W4312262803 hasConceptScore W4312262803C124101348 @default.
- W4312262803 hasConceptScore W4312262803C136764020 @default.
- W4312262803 hasConceptScore W4312262803C154945302 @default.
- W4312262803 hasConceptScore W4312262803C167900197 @default.
- W4312262803 hasConceptScore W4312262803C169258074 @default.
- W4312262803 hasConceptScore W4312262803C35525427 @default.
- W4312262803 hasConceptScore W4312262803C38652104 @default.
- W4312262803 hasConceptScore W4312262803C38822068 @default.
- W4312262803 hasConceptScore W4312262803C41008148 @default.
- W4312262803 hasConceptScore W4312262803C45942800 @default.
- W4312262803 hasConceptScore W4312262803C84525736 @default.
- W4312262803 hasLocation W43122628031 @default.
- W4312262803 hasOpenAccess W4312262803 @default.
- W4312262803 hasPrimaryLocation W43122628031 @default.
- W4312262803 hasRelatedWork W3195168932 @default.
- W4312262803 hasRelatedWork W4285157290 @default.
- W4312262803 hasRelatedWork W4318350883 @default.
- W4312262803 hasRelatedWork W4321636153 @default.
- W4312262803 hasRelatedWork W4377964522 @default.
- W4312262803 hasRelatedWork W4381414210 @default.
- W4312262803 hasRelatedWork W4383535405 @default.
- W4312262803 hasRelatedWork W4384345534 @default.
- W4312262803 hasRelatedWork W4386072274 @default.
- W4312262803 hasRelatedWork W4386123260 @default.
- W4312262803 isParatext "false" @default.
- W4312262803 isRetracted "false" @default.
- W4312262803 workType "article" @default.