Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312291346> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4312291346 abstract "The cyber assault has emerged as a serious digital threat. Day after day, hackers inflict severe financial harm on nations and people alike. As a result, threat detection has become increasingly critical for computer system security going forward. This research focused on seeing if it can recognize and anticipate dangers based on complicated instances by using machine learning. This can help identify and prevent attacks before they happen. Many well-known threat classification methods are tested in this work. It is centered around six of the most prominent machine learning (ML) techniques used in intrusion detection research: Random Forest, Naive Bayes, Artificial Neural Networks, K-nearest neighbor algorithm, Support Vector Machines, and bagging. In this study, a machine learning-based strategy for reliably predicting dos, R2L, U2R, probe, and overall attacks was established by assessing the accuracy of several ML tactics. Finding effective machine learning algorithms, as well as determining critical qualities that can provide the best outcomes, is a massive task for academics. This paper also examines the benefits and drawbacks of each method before applying it to the NSL-KDD dataset to evaluate how well they perform. The novelty in this research work lies in the fact that it utilizes various feature selection methods to find the set of features that have the greatest impact on classification performance. Analysis of the results using different performance metrics revealed improved accuracy. For the NSL-KDD dataset’s intrusion detection and attack type classification tasks, the highest detection rate was obtained with 99.86%." @default.
- W4312291346 created "2023-01-04" @default.
- W4312291346 creator A5043762950 @default.
- W4312291346 creator A5062456603 @default.
- W4312291346 date "2022-08-04" @default.
- W4312291346 modified "2023-09-27" @default.
- W4312291346 title "A Performance Analysis of Machine Learning Models for Attack Prediction using Different Feature Selection Techniques" @default.
- W4312291346 cites W1526458608 @default.
- W4312291346 cites W1978436207 @default.
- W4312291346 cites W1992835539 @default.
- W4312291346 cites W1995678176 @default.
- W4312291346 cites W2007087405 @default.
- W4312291346 cites W2061517920 @default.
- W4312291346 cites W2087973052 @default.
- W4312291346 cites W2089612197 @default.
- W4312291346 cites W2099940443 @default.
- W4312291346 cites W2103414007 @default.
- W4312291346 cites W2744338514 @default.
- W4312291346 cites W2892859754 @default.
- W4312291346 cites W2915197513 @default.
- W4312291346 cites W2919868916 @default.
- W4312291346 cites W2924126763 @default.
- W4312291346 cites W2964880650 @default.
- W4312291346 cites W3011040471 @default.
- W4312291346 cites W3045885110 @default.
- W4312291346 cites W3048484211 @default.
- W4312291346 doi "https://doi.org/10.1109/bcd54882.2022.9900597" @default.
- W4312291346 hasPublicationYear "2022" @default.
- W4312291346 type Work @default.
- W4312291346 citedByCount "0" @default.
- W4312291346 crossrefType "proceedings-article" @default.
- W4312291346 hasAuthorship W4312291346A5043762950 @default.
- W4312291346 hasAuthorship W4312291346A5062456603 @default.
- W4312291346 hasConcept C108583219 @default.
- W4312291346 hasConcept C119857082 @default.
- W4312291346 hasConcept C12267149 @default.
- W4312291346 hasConcept C148483581 @default.
- W4312291346 hasConcept C154945302 @default.
- W4312291346 hasConcept C169258074 @default.
- W4312291346 hasConcept C2778403875 @default.
- W4312291346 hasConcept C35525427 @default.
- W4312291346 hasConcept C41008148 @default.
- W4312291346 hasConcept C50644808 @default.
- W4312291346 hasConcept C52001869 @default.
- W4312291346 hasConceptScore W4312291346C108583219 @default.
- W4312291346 hasConceptScore W4312291346C119857082 @default.
- W4312291346 hasConceptScore W4312291346C12267149 @default.
- W4312291346 hasConceptScore W4312291346C148483581 @default.
- W4312291346 hasConceptScore W4312291346C154945302 @default.
- W4312291346 hasConceptScore W4312291346C169258074 @default.
- W4312291346 hasConceptScore W4312291346C2778403875 @default.
- W4312291346 hasConceptScore W4312291346C35525427 @default.
- W4312291346 hasConceptScore W4312291346C41008148 @default.
- W4312291346 hasConceptScore W4312291346C50644808 @default.
- W4312291346 hasConceptScore W4312291346C52001869 @default.
- W4312291346 hasLocation W43122913461 @default.
- W4312291346 hasOpenAccess W4312291346 @default.
- W4312291346 hasPrimaryLocation W43122913461 @default.
- W4312291346 hasRelatedWork W2979979539 @default.
- W4312291346 hasRelatedWork W2985924212 @default.
- W4312291346 hasRelatedWork W3105251098 @default.
- W4312291346 hasRelatedWork W3127425528 @default.
- W4312291346 hasRelatedWork W4205958290 @default.
- W4312291346 hasRelatedWork W4212852473 @default.
- W4312291346 hasRelatedWork W4213444042 @default.
- W4312291346 hasRelatedWork W4226324856 @default.
- W4312291346 hasRelatedWork W4292651891 @default.
- W4312291346 hasRelatedWork W4311106074 @default.
- W4312291346 isParatext "false" @default.
- W4312291346 isRetracted "false" @default.
- W4312291346 workType "article" @default.