Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312295965> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4312295965 endingPage "13" @default.
- W4312295965 startingPage "5" @default.
- W4312295965 abstract "Deep neural networks have achieved the most outstanding performance in compressed sensing magnetic resonance imaging (CS-MRI) reconstruction by learning the potential structures of images from a large number of training samples. However, the required data comprising hundreds of subjects are usually rare. In this article, we remedy this problem by transferring the easy-to-get deep Gaussian denoisers trained with natural images for artifact reduction in the iterative recovery process without the use of full-sampled MRI data. To this end, we first train a set of deep Gaussian networks with natural images and then incorporate them into a play-and-plug framework that is built by modifying the proximal gradient algorithm with the classical momentum strategy. Furthermore, a nonlocal denoiser is employed for efficiently removing the artifacts. It is found that the momentum strategy can make the statistical distribution of artifacts approximately be Gaussian, making the Gaussian denoisers available for CS-MRI. In the experiments, we verify the rationality of the established framework and show that our method consistently outperforms state-of-the-art methods." @default.
- W4312295965 created "2023-01-04" @default.
- W4312295965 creator A5031778950 @default.
- W4312295965 creator A5061290444 @default.
- W4312295965 date "2022-10-01" @default.
- W4312295965 modified "2023-10-17" @default.
- W4312295965 title "Transferring Deep Gaussian Denoiser for Compressed Sensing MRI Reconstruction" @default.
- W4312295965 cites W1988720110 @default.
- W4312295965 cites W2006262045 @default.
- W4312295965 cites W2018990310 @default.
- W4312295965 cites W2056370875 @default.
- W4312295965 cites W2141168890 @default.
- W4312295965 cites W2613155248 @default.
- W4312295965 cites W2808402975 @default.
- W4312295965 cites W2883105305 @default.
- W4312295965 cites W2891437428 @default.
- W4312295965 cites W2902719825 @default.
- W4312295965 cites W2927351257 @default.
- W4312295965 cites W2979703761 @default.
- W4312295965 cites W2995286437 @default.
- W4312295965 cites W2996927594 @default.
- W4312295965 cites W2999653953 @default.
- W4312295965 cites W3001319253 @default.
- W4312295965 cites W3046934520 @default.
- W4312295965 cites W3216379006 @default.
- W4312295965 cites W4242059867 @default.
- W4312295965 doi "https://doi.org/10.1109/mmul.2022.3214815" @default.
- W4312295965 hasPublicationYear "2022" @default.
- W4312295965 type Work @default.
- W4312295965 citedByCount "1" @default.
- W4312295965 countsByYear W43122959652023 @default.
- W4312295965 crossrefType "journal-article" @default.
- W4312295965 hasAuthorship W4312295965A5031778950 @default.
- W4312295965 hasAuthorship W4312295965A5061290444 @default.
- W4312295965 hasConcept C108583219 @default.
- W4312295965 hasConcept C11413529 @default.
- W4312295965 hasConcept C121332964 @default.
- W4312295965 hasConcept C124851039 @default.
- W4312295965 hasConcept C141379421 @default.
- W4312295965 hasConcept C153180895 @default.
- W4312295965 hasConcept C154945302 @default.
- W4312295965 hasConcept C163716315 @default.
- W4312295965 hasConcept C2779010991 @default.
- W4312295965 hasConcept C31972630 @default.
- W4312295965 hasConcept C41008148 @default.
- W4312295965 hasConcept C50644808 @default.
- W4312295965 hasConcept C61326573 @default.
- W4312295965 hasConcept C62520636 @default.
- W4312295965 hasConceptScore W4312295965C108583219 @default.
- W4312295965 hasConceptScore W4312295965C11413529 @default.
- W4312295965 hasConceptScore W4312295965C121332964 @default.
- W4312295965 hasConceptScore W4312295965C124851039 @default.
- W4312295965 hasConceptScore W4312295965C141379421 @default.
- W4312295965 hasConceptScore W4312295965C153180895 @default.
- W4312295965 hasConceptScore W4312295965C154945302 @default.
- W4312295965 hasConceptScore W4312295965C163716315 @default.
- W4312295965 hasConceptScore W4312295965C2779010991 @default.
- W4312295965 hasConceptScore W4312295965C31972630 @default.
- W4312295965 hasConceptScore W4312295965C41008148 @default.
- W4312295965 hasConceptScore W4312295965C50644808 @default.
- W4312295965 hasConceptScore W4312295965C61326573 @default.
- W4312295965 hasConceptScore W4312295965C62520636 @default.
- W4312295965 hasFunder F4320321001 @default.
- W4312295965 hasFunder F4320337111 @default.
- W4312295965 hasIssue "4" @default.
- W4312295965 hasLocation W43122959651 @default.
- W4312295965 hasOpenAccess W4312295965 @default.
- W4312295965 hasPrimaryLocation W43122959651 @default.
- W4312295965 hasRelatedWork W1865437409 @default.
- W4312295965 hasRelatedWork W1999371807 @default.
- W4312295965 hasRelatedWork W2077219921 @default.
- W4312295965 hasRelatedWork W2517246325 @default.
- W4312295965 hasRelatedWork W2587863204 @default.
- W4312295965 hasRelatedWork W2738221750 @default.
- W4312295965 hasRelatedWork W3196786996 @default.
- W4312295965 hasRelatedWork W4213065378 @default.
- W4312295965 hasRelatedWork W4300265947 @default.
- W4312295965 hasRelatedWork W4311224126 @default.
- W4312295965 hasVolume "29" @default.
- W4312295965 isParatext "false" @default.
- W4312295965 isRetracted "false" @default.
- W4312295965 workType "article" @default.