Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312296464> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4312296464 abstract "Resource allocation has been always a major concern of cloud providers. Workload prediction can effectively improve resource utility by providing information about resources available in the future. Machine learning-based workload prediction has been widely studied and deployed in large-scale clouds. However, workload prediction in Inter-Cloud environments has not been considered. Since more and more cloud services are orchestrated by containers (or virtual machines) distributed in multiple clouds, intelligent models for workload prediction should be trained based on trace data across clouds. Due to concerns raised by data privacy, the trace data of clouds may not be shared with each other, and general distributed training is not applicable. In this paper, we propose a general and flexible framework, namely EFL-WP, for training workload prediction models in the Inter-Cloud environment. EFL-WP adopts the federated learning approach and allows cloud providers to collaborate to train prediction models without sharing traces. EFL-WP considers the difference among workloads in different cloud (i.e., the Non-IID characteristic of traces) by using two novel techniques: participant selection mechanism and multi-global models aggregation. The former can prevent some local models trained on non-IID traces from participating in global aggregation, which is beneficial to the global model. The latter allows the coordinator to aggregate several global models according to the difference among local models. To further improve accuracy, EFL-WP adopts an ensemble inference strategy. Experimental results show that the proposed framework can be superior to baselines on both Alibaba dataset and Tencent Games Traces." @default.
- W4312296464 created "2023-01-04" @default.
- W4312296464 creator A5041031990 @default.
- W4312296464 creator A5084826798 @default.
- W4312296464 creator A5089773619 @default.
- W4312296464 date "2022-07-18" @default.
- W4312296464 modified "2023-09-27" @default.
- W4312296464 title "EFL-WP: Federated Learning-Based Workload Prediction in Inter-Cloud Environments" @default.
- W4312296464 cites W1587464373 @default.
- W4312296464 cites W1984255960 @default.
- W4312296464 cites W2044794176 @default.
- W4312296464 cites W2064675550 @default.
- W4312296464 cites W2066334462 @default.
- W4312296464 cites W2119404606 @default.
- W4312296464 cites W2144628693 @default.
- W4312296464 cites W2578279218 @default.
- W4312296464 cites W2604847698 @default.
- W4312296464 cites W2608354815 @default.
- W4312296464 cites W2764100055 @default.
- W4312296464 cites W2791512297 @default.
- W4312296464 cites W2795993366 @default.
- W4312296464 cites W2799567470 @default.
- W4312296464 cites W2801175776 @default.
- W4312296464 cites W2912126994 @default.
- W4312296464 cites W2921099987 @default.
- W4312296464 cites W2953169926 @default.
- W4312296464 cites W2963209930 @default.
- W4312296464 cites W2963456518 @default.
- W4312296464 cites W3005989820 @default.
- W4312296464 cites W3043699074 @default.
- W4312296464 cites W3044011738 @default.
- W4312296464 cites W3047304572 @default.
- W4312296464 cites W3091870957 @default.
- W4312296464 cites W3092396074 @default.
- W4312296464 cites W3095983275 @default.
- W4312296464 cites W3103802018 @default.
- W4312296464 cites W3109073683 @default.
- W4312296464 cites W3187557930 @default.
- W4312296464 cites W4253305097 @default.
- W4312296464 doi "https://doi.org/10.1109/ijcnn55064.2022.9892264" @default.
- W4312296464 hasPublicationYear "2022" @default.
- W4312296464 type Work @default.
- W4312296464 citedByCount "0" @default.
- W4312296464 crossrefType "proceedings-article" @default.
- W4312296464 hasAuthorship W4312296464A5041031990 @default.
- W4312296464 hasAuthorship W4312296464A5084826798 @default.
- W4312296464 hasAuthorship W4312296464A5089773619 @default.
- W4312296464 hasConcept C111919701 @default.
- W4312296464 hasConcept C119857082 @default.
- W4312296464 hasConcept C120314980 @default.
- W4312296464 hasConcept C124101348 @default.
- W4312296464 hasConcept C138885662 @default.
- W4312296464 hasConcept C154945302 @default.
- W4312296464 hasConcept C159985019 @default.
- W4312296464 hasConcept C192562407 @default.
- W4312296464 hasConcept C2776214188 @default.
- W4312296464 hasConcept C2778476105 @default.
- W4312296464 hasConcept C41008148 @default.
- W4312296464 hasConcept C41895202 @default.
- W4312296464 hasConcept C4679612 @default.
- W4312296464 hasConcept C75291252 @default.
- W4312296464 hasConcept C79974875 @default.
- W4312296464 hasConceptScore W4312296464C111919701 @default.
- W4312296464 hasConceptScore W4312296464C119857082 @default.
- W4312296464 hasConceptScore W4312296464C120314980 @default.
- W4312296464 hasConceptScore W4312296464C124101348 @default.
- W4312296464 hasConceptScore W4312296464C138885662 @default.
- W4312296464 hasConceptScore W4312296464C154945302 @default.
- W4312296464 hasConceptScore W4312296464C159985019 @default.
- W4312296464 hasConceptScore W4312296464C192562407 @default.
- W4312296464 hasConceptScore W4312296464C2776214188 @default.
- W4312296464 hasConceptScore W4312296464C2778476105 @default.
- W4312296464 hasConceptScore W4312296464C41008148 @default.
- W4312296464 hasConceptScore W4312296464C41895202 @default.
- W4312296464 hasConceptScore W4312296464C4679612 @default.
- W4312296464 hasConceptScore W4312296464C75291252 @default.
- W4312296464 hasConceptScore W4312296464C79974875 @default.
- W4312296464 hasFunder F4320321001 @default.
- W4312296464 hasFunder F4320321921 @default.
- W4312296464 hasLocation W43122964641 @default.
- W4312296464 hasOpenAccess W4312296464 @default.
- W4312296464 hasPrimaryLocation W43122964641 @default.
- W4312296464 hasRelatedWork W1980717413 @default.
- W4312296464 hasRelatedWork W1992409097 @default.
- W4312296464 hasRelatedWork W2018701190 @default.
- W4312296464 hasRelatedWork W2429304581 @default.
- W4312296464 hasRelatedWork W3042612637 @default.
- W4312296464 hasRelatedWork W3134756569 @default.
- W4312296464 hasRelatedWork W3210966092 @default.
- W4312296464 hasRelatedWork W4210436169 @default.
- W4312296464 hasRelatedWork W4229335405 @default.
- W4312296464 hasRelatedWork W4293084236 @default.
- W4312296464 isParatext "false" @default.
- W4312296464 isRetracted "false" @default.
- W4312296464 workType "article" @default.