Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312311812> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4312311812 endingPage "125919" @default.
- W4312311812 startingPage "125908" @default.
- W4312311812 abstract "The purpose is to solve the problems of solid subjectivity in the traditional manual analysis of volleyball game videos and the traditional Human Behavior Recognition (HBR) algorithm, such as excessive calculation, high hardware conditions, and poor long-stream video modeling ability. Firstly, this paper expounds on the relevant theories. Secondly, a fusion Convolutional Neural Network (CNN)-based HBR model is implemented by combining two-stream CNN (TSCNN), Three-Dimensional (3D) CNN, and Long Short-Term Memory (LSTM) network. Notably, the LSTM has an excellent long-term Dynamic Information Extraction (DIE) ability. Finally, the public dataset is selected to verify the model’s volleyball-game-video-oriented HBR performance. The experimental results corroborate that: (1) The parameters of the proposed fusion-CNN-based HBR model are determined as follows: the number of video segments is three, the average method is used for feature fusion, and then the HBR accuracy is the highest when the fusion ratio of spatial feature map and temporal feature map is 4:6, and the learning rate is 0.0014. (2) The average HBR accuracy of the proposed fusion-CNN-based HBR model on three different datasets is 4%, 2.7%, and 3% higher than that of other popular networks, respectively. The improvement effect of the model is remarkable, and it is suitable for the study of Human Behavior Analysis (HBA) in volleyball match videos. Finally, the proposed HBR model can provide more accurate results for volleyball video-based HBR, which is significant in promoting the rapid development of volleyball sports." @default.
- W4312311812 created "2023-01-04" @default.
- W4312311812 creator A5071586630 @default.
- W4312311812 creator A5088260348 @default.
- W4312311812 date "2022-01-01" @default.
- W4312311812 modified "2023-10-14" @default.
- W4312311812 title "The Application of Deep Convolution Neural Network in Volleyball Video Behavior Recognition" @default.
- W4312311812 cites W2624385633 @default.
- W4312311812 cites W2804436788 @default.
- W4312311812 cites W2808442315 @default.
- W4312311812 cites W2809254203 @default.
- W4312311812 cites W2920014186 @default.
- W4312311812 cites W2925327970 @default.
- W4312311812 cites W2944851425 @default.
- W4312311812 cites W2953521532 @default.
- W4312311812 cites W2986677756 @default.
- W4312311812 cites W2992109079 @default.
- W4312311812 cites W2996367417 @default.
- W4312311812 cites W2996836954 @default.
- W4312311812 cites W3003675018 @default.
- W4312311812 cites W3011384521 @default.
- W4312311812 cites W3013424484 @default.
- W4312311812 cites W3018925616 @default.
- W4312311812 cites W3033887932 @default.
- W4312311812 cites W3040726928 @default.
- W4312311812 cites W3100321043 @default.
- W4312311812 cites W3100990056 @default.
- W4312311812 cites W3174889506 @default.
- W4312311812 cites W3187636822 @default.
- W4312311812 cites W3192851400 @default.
- W4312311812 cites W3200145035 @default.
- W4312311812 cites W4205234192 @default.
- W4312311812 cites W4206989257 @default.
- W4312311812 doi "https://doi.org/10.1109/access.2022.3221530" @default.
- W4312311812 hasPublicationYear "2022" @default.
- W4312311812 type Work @default.
- W4312311812 citedByCount "0" @default.
- W4312311812 crossrefType "journal-article" @default.
- W4312311812 hasAuthorship W4312311812A5071586630 @default.
- W4312311812 hasAuthorship W4312311812A5088260348 @default.
- W4312311812 hasBestOaLocation W43123118121 @default.
- W4312311812 hasConcept C138885662 @default.
- W4312311812 hasConcept C153180895 @default.
- W4312311812 hasConcept C154945302 @default.
- W4312311812 hasConcept C158525013 @default.
- W4312311812 hasConcept C2776401178 @default.
- W4312311812 hasConcept C3018412434 @default.
- W4312311812 hasConcept C31972630 @default.
- W4312311812 hasConcept C41008148 @default.
- W4312311812 hasConcept C41895202 @default.
- W4312311812 hasConcept C45347329 @default.
- W4312311812 hasConcept C49774154 @default.
- W4312311812 hasConcept C50644808 @default.
- W4312311812 hasConcept C52622490 @default.
- W4312311812 hasConcept C81363708 @default.
- W4312311812 hasConceptScore W4312311812C138885662 @default.
- W4312311812 hasConceptScore W4312311812C153180895 @default.
- W4312311812 hasConceptScore W4312311812C154945302 @default.
- W4312311812 hasConceptScore W4312311812C158525013 @default.
- W4312311812 hasConceptScore W4312311812C2776401178 @default.
- W4312311812 hasConceptScore W4312311812C3018412434 @default.
- W4312311812 hasConceptScore W4312311812C31972630 @default.
- W4312311812 hasConceptScore W4312311812C41008148 @default.
- W4312311812 hasConceptScore W4312311812C41895202 @default.
- W4312311812 hasConceptScore W4312311812C45347329 @default.
- W4312311812 hasConceptScore W4312311812C49774154 @default.
- W4312311812 hasConceptScore W4312311812C50644808 @default.
- W4312311812 hasConceptScore W4312311812C52622490 @default.
- W4312311812 hasConceptScore W4312311812C81363708 @default.
- W4312311812 hasLocation W43123118121 @default.
- W4312311812 hasOpenAccess W4312311812 @default.
- W4312311812 hasPrimaryLocation W43123118121 @default.
- W4312311812 hasRelatedWork W1504288058 @default.
- W4312311812 hasRelatedWork W2146076056 @default.
- W4312311812 hasRelatedWork W2167293474 @default.
- W4312311812 hasRelatedWork W2295021132 @default.
- W4312311812 hasRelatedWork W2331674254 @default.
- W4312311812 hasRelatedWork W2546942002 @default.
- W4312311812 hasRelatedWork W2811390910 @default.
- W4312311812 hasRelatedWork W4312376745 @default.
- W4312311812 hasRelatedWork W4312417841 @default.
- W4312311812 hasRelatedWork W4386303287 @default.
- W4312311812 hasVolume "10" @default.
- W4312311812 isParatext "false" @default.
- W4312311812 isRetracted "false" @default.
- W4312311812 workType "article" @default.