Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312372284> ?p ?o ?g. }
- W4312372284 endingPage "15" @default.
- W4312372284 startingPage "1" @default.
- W4312372284 abstract "Hyperspectral image (HSI) is always corrupted by various types of noise during image capturing, such as Gaussian noise, stripe noise, deadline noise, impulse noise, and more. Such complicated noise significantly degrades imaging quality and thus limits the performance of downstream vision tasks. Current HSI denoising methods tackle this problem by modeling either the spectral-spatial prior of HSI or the noise characteristic of HSI, and few work consider the two aspects simultaneously. In this paper, we propose a new HSI denoising method by simultaneously modeling the HSI prior and the HSI noise characteristic. Specifically, we firstly utilize the non independent and identically distributed (non i.i.d.) mixture of Gaussian (MoG) assumption to characterize the complex noise, which corresponds to optimize a weighted fidelity function. Secondly, we exploit HSI’s non-local similarity and spatial-spectral correlation priors by applying non-local low rank model. Thirdly, we design an adaptive edge preserving total variation regularization term to characterize the non-local smooth property of HSI. Finally, we propose a new denoising model and develop effective ADMM algorithm to solve it. Extensive experiments on simulated data and real data substantiate the superiority of the proposed method beyond state-of-the-arts." @default.
- W4312372284 created "2023-01-04" @default.
- W4312372284 creator A5028103486 @default.
- W4312372284 creator A5041482301 @default.
- W4312372284 creator A5077196425 @default.
- W4312372284 creator A5078681670 @default.
- W4312372284 date "2022-01-01" @default.
- W4312372284 modified "2023-10-13" @default.
- W4312372284 title "Hyperspectral Image Denoising With Weighted Nonlocal Low-Rank Model and Adaptive Total Variation Regularization" @default.
- W4312372284 cites W1513013675 @default.
- W4312372284 cites W1944540851 @default.
- W4312372284 cites W1970099214 @default.
- W4312372284 cites W1974438823 @default.
- W4312372284 cites W1977066218 @default.
- W4312372284 cites W1985242206 @default.
- W4312372284 cites W1991003630 @default.
- W4312372284 cites W1994040806 @default.
- W4312372284 cites W2032944446 @default.
- W4312372284 cites W2039596145 @default.
- W4312372284 cites W2040511445 @default.
- W4312372284 cites W2053419820 @default.
- W4312372284 cites W2056370875 @default.
- W4312372284 cites W2069441534 @default.
- W4312372284 cites W2072026894 @default.
- W4312372284 cites W2076963649 @default.
- W4312372284 cites W2083799719 @default.
- W4312372284 cites W2095906131 @default.
- W4312372284 cites W2103559027 @default.
- W4312372284 cites W2110940063 @default.
- W4312372284 cites W2114770744 @default.
- W4312372284 cites W2121338139 @default.
- W4312372284 cites W2133665775 @default.
- W4312372284 cites W2136625467 @default.
- W4312372284 cites W2138507544 @default.
- W4312372284 cites W2146842127 @default.
- W4312372284 cites W2147353113 @default.
- W4312372284 cites W2152409790 @default.
- W4312372284 cites W2153663612 @default.
- W4312372284 cites W2161073299 @default.
- W4312372284 cites W2163886442 @default.
- W4312372284 cites W2298855392 @default.
- W4312372284 cites W2329868263 @default.
- W4312372284 cites W2336104109 @default.
- W4312372284 cites W2464748116 @default.
- W4312372284 cites W2492899067 @default.
- W4312372284 cites W2585357012 @default.
- W4312372284 cites W2747865121 @default.
- W4312372284 cites W2775046098 @default.
- W4312372284 cites W2790888198 @default.
- W4312372284 cites W2805465265 @default.
- W4312372284 cites W2806155925 @default.
- W4312372284 cites W2891069202 @default.
- W4312372284 cites W2914736033 @default.
- W4312372284 cites W2955863859 @default.
- W4312372284 cites W2964179170 @default.
- W4312372284 cites W2964193752 @default.
- W4312372284 cites W2980079746 @default.
- W4312372284 cites W2984522085 @default.
- W4312372284 cites W2986829670 @default.
- W4312372284 cites W3013064625 @default.
- W4312372284 cites W3016665724 @default.
- W4312372284 cites W3017506038 @default.
- W4312372284 cites W3022346097 @default.
- W4312372284 cites W3032341357 @default.
- W4312372284 cites W3036751413 @default.
- W4312372284 cites W3042423471 @default.
- W4312372284 cites W3042671644 @default.
- W4312372284 cites W3092426727 @default.
- W4312372284 cites W3103919952 @default.
- W4312372284 cites W3104436273 @default.
- W4312372284 cites W3118496544 @default.
- W4312372284 cites W3147172970 @default.
- W4312372284 cites W3166943687 @default.
- W4312372284 cites W3179808591 @default.
- W4312372284 cites W4206390268 @default.
- W4312372284 cites W4206806028 @default.
- W4312372284 cites W4220828296 @default.
- W4312372284 cites W4226430688 @default.
- W4312372284 doi "https://doi.org/10.1109/tgrs.2022.3214542" @default.
- W4312372284 hasPublicationYear "2022" @default.
- W4312372284 type Work @default.
- W4312372284 citedByCount "3" @default.
- W4312372284 countsByYear W43123722842023 @default.
- W4312372284 crossrefType "journal-article" @default.
- W4312372284 hasAuthorship W4312372284A5028103486 @default.
- W4312372284 hasAuthorship W4312372284A5041482301 @default.
- W4312372284 hasAuthorship W4312372284A5077196425 @default.
- W4312372284 hasAuthorship W4312372284A5078681670 @default.
- W4312372284 hasConcept C106430172 @default.
- W4312372284 hasConcept C107673813 @default.
- W4312372284 hasConcept C115961682 @default.
- W4312372284 hasConcept C127372701 @default.
- W4312372284 hasConcept C153180895 @default.
- W4312372284 hasConcept C154945302 @default.
- W4312372284 hasConcept C159078339 @default.
- W4312372284 hasConcept C160633673 @default.
- W4312372284 hasConcept C163294075 @default.
- W4312372284 hasConcept C177769412 @default.