Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312376281> ?p ?o ?g. }
- W4312376281 endingPage "e41577" @default.
- W4312376281 startingPage "e41577" @default.
- W4312376281 abstract "Continuous glucose monitors have shown great promise in improving outpatient blood glucose (BG) control; however, continuous glucose monitors are not routinely used in hospitals, and glucose management is driven by point-of-care (finger stick) and serum glucose measurements in most patients.This study aimed to evaluate times series approaches for prediction of inpatient BG using only point-of-care and serum glucose observations.Our data set included electronic health record data from 184,320 admissions, from patients who received at least one unit of subcutaneous insulin, had at least 4 BG measurements, and were discharged between January 1, 2015, and May 31, 2019, from 5 Johns Hopkins Health System hospitals. A total of 2,436,228 BG observations were included after excluding measurements obtained in quick succession, from patients who received intravenous insulin, or from critically ill patients. After exclusion criteria, 2.85% (3253/113,976), 32.5% (37,045/113,976), and 1.06% (1207/113,976) of admissions had a coded diagnosis of type 1, type 2, and other diabetes, respectively. The outcome of interest was the predicted value of the next BG measurement (mg/dL). Multiple time series predictors were created and analyzed by comparing those predictors and the index BG measurement (sample-and-hold technique) with next BG measurement. The population was classified by glycemic variability based on the coefficient of variation. To compare the performance of different time series predictors among one another, R2, root mean squared error, and Clarke Error Grid were calculated and compared with the next BG measurement. All these time series predictors were then used together in Cubist, linear, random forest, partial least squares, and k-nearest neighbor methods.The median number of BG measurements from 113,976 admissions was 12 (IQR 5-24). The R2 values for the sample-and-hold, 2-hour, 4-hour, 16-hour, and 24-hour moving average were 0.529, 0.504, 0.481, 0.467, and 0.459, respectively. The R2 values for 4-hour moving average based on glycemic variability were 0.680, 0.480, 0.290, and 0.205 for low, medium, high, and very high glucose variability, respectively. The proportion of BG predictions in zone A of the Clarke Error Grid analysis was 61%, 59%, 27%, and 53% for 4-hour moving average, 24-hour moving average, 3 observation rolling regression, and recursive regression predictors, respectively. In a fully adjusted Cubist, linear, random forest, partial least squares, and k-nearest neighbor model, the R2 values were 0.563, 0.526, 0.538, and 0.472, respectively.When analyzing time series predictors independently, increasing variability in a patient's BG decreased predictive accuracy. Similarly, inclusion of older BG measurements decreased predictive accuracy. These relationships become weaker as glucose variability increases. Machine learning techniques marginally augmented the performance of time series predictors for predicting a patient's next BG measurement. Further studies should determine the potential of using time series analyses for prediction of inpatient dysglycemia." @default.
- W4312376281 created "2023-01-04" @default.
- W4312376281 creator A5011981366 @default.
- W4312376281 creator A5051572835 @default.
- W4312376281 creator A5066663280 @default.
- W4312376281 creator A5070100761 @default.
- W4312376281 date "2023-01-31" @default.
- W4312376281 modified "2023-09-25" @default.
- W4312376281 title "Prediction of Next Glucose Measurement in Hospitalized Patients by Comparing Various Regression Methods: Retrospective Cohort Study" @default.
- W4312376281 cites W1481566577 @default.
- W4312376281 cites W1708450707 @default.
- W4312376281 cites W1831050183 @default.
- W4312376281 cites W1924318177 @default.
- W4312376281 cites W1968551766 @default.
- W4312376281 cites W1976351811 @default.
- W4312376281 cites W1980253731 @default.
- W4312376281 cites W1981302261 @default.
- W4312376281 cites W1983321018 @default.
- W4312376281 cites W1986495510 @default.
- W4312376281 cites W2003146452 @default.
- W4312376281 cites W2007862039 @default.
- W4312376281 cites W2011881366 @default.
- W4312376281 cites W2035857772 @default.
- W4312376281 cites W2050208463 @default.
- W4312376281 cites W2057327562 @default.
- W4312376281 cites W2093721906 @default.
- W4312376281 cites W2094502794 @default.
- W4312376281 cites W2094743912 @default.
- W4312376281 cites W2101539208 @default.
- W4312376281 cites W2120315766 @default.
- W4312376281 cites W2130933438 @default.
- W4312376281 cites W2132115169 @default.
- W4312376281 cites W2165543242 @default.
- W4312376281 cites W2166699924 @default.
- W4312376281 cites W2269003205 @default.
- W4312376281 cites W2277167153 @default.
- W4312376281 cites W2323889566 @default.
- W4312376281 cites W2518284272 @default.
- W4312376281 cites W2523526638 @default.
- W4312376281 cites W2636359553 @default.
- W4312376281 cites W2751250398 @default.
- W4312376281 cites W2789754525 @default.
- W4312376281 cites W2804281019 @default.
- W4312376281 cites W2809148434 @default.
- W4312376281 cites W2886490007 @default.
- W4312376281 cites W2892003362 @default.
- W4312376281 cites W2895530510 @default.
- W4312376281 cites W2912691735 @default.
- W4312376281 cites W2938006113 @default.
- W4312376281 cites W2947919073 @default.
- W4312376281 cites W2952274369 @default.
- W4312376281 cites W2993720025 @default.
- W4312376281 cites W3021246267 @default.
- W4312376281 cites W3034411395 @default.
- W4312376281 cites W3034900830 @default.
- W4312376281 cites W3081858680 @default.
- W4312376281 cites W3096050226 @default.
- W4312376281 cites W3104876936 @default.
- W4312376281 cites W3111353724 @default.
- W4312376281 cites W3118610995 @default.
- W4312376281 cites W3154529071 @default.
- W4312376281 cites W3167277098 @default.
- W4312376281 cites W3182706339 @default.
- W4312376281 cites W4200284345 @default.
- W4312376281 cites W4210720726 @default.
- W4312376281 cites W4220999882 @default.
- W4312376281 cites W4229333283 @default.
- W4312376281 cites W4281790366 @default.
- W4312376281 cites W4283581668 @default.
- W4312376281 cites W4303857356 @default.
- W4312376281 doi "https://doi.org/10.2196/41577" @default.
- W4312376281 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36719713" @default.
- W4312376281 hasPublicationYear "2023" @default.
- W4312376281 type Work @default.
- W4312376281 citedByCount "1" @default.
- W4312376281 countsByYear W43123762812023 @default.
- W4312376281 crossrefType "journal-article" @default.
- W4312376281 hasAuthorship W4312376281A5011981366 @default.
- W4312376281 hasAuthorship W4312376281A5051572835 @default.
- W4312376281 hasAuthorship W4312376281A5066663280 @default.
- W4312376281 hasAuthorship W4312376281A5070100761 @default.
- W4312376281 hasBestOaLocation W43123762811 @default.
- W4312376281 hasConcept C105795698 @default.
- W4312376281 hasConcept C126322002 @default.
- W4312376281 hasConcept C134018914 @default.
- W4312376281 hasConcept C194828623 @default.
- W4312376281 hasConcept C195910791 @default.
- W4312376281 hasConcept C2777180221 @default.
- W4312376281 hasConcept C2779306644 @default.
- W4312376281 hasConcept C2780473172 @default.
- W4312376281 hasConcept C2908647359 @default.
- W4312376281 hasConcept C33923547 @default.
- W4312376281 hasConcept C48921125 @default.
- W4312376281 hasConcept C555293320 @default.
- W4312376281 hasConcept C71924100 @default.
- W4312376281 hasConcept C72563966 @default.
- W4312376281 hasConcept C99454951 @default.
- W4312376281 hasConceptScore W4312376281C105795698 @default.