Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312400917> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4312400917 abstract "Abstract Non-equilibrium statistical mechanics models can be used to construct reduced order models from the time-dynamics data such as numerical or physical fluid mechanics experiments. One of the well-established statistical projection methods is the Kramers-Moyal expansion (KM) method. The first two terms of the KM expansion result can be used to construct a non-linear Langevin equation, which can serve as the statistically-trained reduced-order model. This non-linear Langevin equation can be approximated to the Fokker-Planck equation, which is similar to Advection-Diffusion equation, thereby preserving some characteristics of fluctuations associated with fluid mechanics. The KM method captures continuous-time dynamics, however, any data obtained through measurement is discrete. In order to accurately capture the time dynamics of the discrete data, the method for calculating the KM coefficients must be carefully chosen and implemented. To better represent the solution from discrete data, the drift and diffusion coefficients can be calculated at multiple time scales and then extrapolated to a time scale of zero, assuming a linear correlation. One challenge in using this method is that the calculated KM coefficients are only accurate for time scales greater than the Taylor microscale. This means that the extrapolation must use only the KM coefficients calculated for time scales greater than the Taylor microscale, however, this value is not always provided from the data nor simple to calculate. This work presents a method of approximating the Taylor microscale from the data through the relationship between the Markov property and the Taylor microscale and implementing this method to find the extrapolated KM coefficients. The KM method implementing the Taylor microscale estimation was applied to existing DNS turbulent channel flow data to model a time series. This generated time series was then compared to the DNS data using a statistical analysis including probability density function, autocorrelation, and power spectral density." @default.
- W4312400917 created "2023-01-04" @default.
- W4312400917 creator A5000479486 @default.
- W4312400917 creator A5007535502 @default.
- W4312400917 creator A5057948557 @default.
- W4312400917 date "2022-08-08" @default.
- W4312400917 modified "2023-10-16" @default.
- W4312400917 title "A Statistical Approach to Quantify Taylor Microscale for Turbulent Flow Surrogate Model" @default.
- W4312400917 doi "https://doi.org/10.1115/icone29-91452" @default.
- W4312400917 hasPublicationYear "2022" @default.
- W4312400917 type Work @default.
- W4312400917 citedByCount "0" @default.
- W4312400917 crossrefType "proceedings-article" @default.
- W4312400917 hasAuthorship W4312400917A5000479486 @default.
- W4312400917 hasAuthorship W4312400917A5007535502 @default.
- W4312400917 hasAuthorship W4312400917A5057948557 @default.
- W4312400917 hasConcept C121332964 @default.
- W4312400917 hasConcept C121864883 @default.
- W4312400917 hasConcept C132459708 @default.
- W4312400917 hasConcept C134306372 @default.
- W4312400917 hasConcept C145420912 @default.
- W4312400917 hasConcept C15476950 @default.
- W4312400917 hasConcept C158946198 @default.
- W4312400917 hasConcept C179428855 @default.
- W4312400917 hasConcept C196558001 @default.
- W4312400917 hasConcept C2777577648 @default.
- W4312400917 hasConcept C28826006 @default.
- W4312400917 hasConcept C33923547 @default.
- W4312400917 hasConcept C57879066 @default.
- W4312400917 hasConcept C69123182 @default.
- W4312400917 hasConcept C91331278 @default.
- W4312400917 hasConcept C93779851 @default.
- W4312400917 hasConceptScore W4312400917C121332964 @default.
- W4312400917 hasConceptScore W4312400917C121864883 @default.
- W4312400917 hasConceptScore W4312400917C132459708 @default.
- W4312400917 hasConceptScore W4312400917C134306372 @default.
- W4312400917 hasConceptScore W4312400917C145420912 @default.
- W4312400917 hasConceptScore W4312400917C15476950 @default.
- W4312400917 hasConceptScore W4312400917C158946198 @default.
- W4312400917 hasConceptScore W4312400917C179428855 @default.
- W4312400917 hasConceptScore W4312400917C196558001 @default.
- W4312400917 hasConceptScore W4312400917C2777577648 @default.
- W4312400917 hasConceptScore W4312400917C28826006 @default.
- W4312400917 hasConceptScore W4312400917C33923547 @default.
- W4312400917 hasConceptScore W4312400917C57879066 @default.
- W4312400917 hasConceptScore W4312400917C69123182 @default.
- W4312400917 hasConceptScore W4312400917C91331278 @default.
- W4312400917 hasConceptScore W4312400917C93779851 @default.
- W4312400917 hasLocation W43124009171 @default.
- W4312400917 hasOpenAccess W4312400917 @default.
- W4312400917 hasPrimaryLocation W43124009171 @default.
- W4312400917 hasRelatedWork W1965064356 @default.
- W4312400917 hasRelatedWork W2000270172 @default.
- W4312400917 hasRelatedWork W2050896565 @default.
- W4312400917 hasRelatedWork W2081819806 @default.
- W4312400917 hasRelatedWork W2153845342 @default.
- W4312400917 hasRelatedWork W2341990541 @default.
- W4312400917 hasRelatedWork W2403071368 @default.
- W4312400917 hasRelatedWork W2498544698 @default.
- W4312400917 hasRelatedWork W4306253022 @default.
- W4312400917 hasRelatedWork W4312400917 @default.
- W4312400917 isParatext "false" @default.
- W4312400917 isRetracted "false" @default.
- W4312400917 workType "article" @default.