Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312414991> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4312414991 abstract "Mercer Engineering Research Center (MERC) developed a neural network-based regression method for predicting maximum stress per flight values at four structural tracking locations on the United States Air Force HH-60G helicopter airframe using Individual Vehicle Health and Usage Monitoring (IVHMS) data. Maximum stress per flight is utilized when evaluating a failure criterion within the HH-60G service life analysis, so an accurate, fleet-wide estimation of maximum stress magnitude and likelihood is critical for accurate service life determinations. The model was trained using parametric flight data time histories (from IVHMS) and stress time histories from a strain survey aircraft. The stress time histories were developed from the strain signals using two different methods depending on the location of strain gauges in the vicinity of the tracking locations. For two of the tracking locations, they were derived from a global finite element model using a collection of strain gauge signals throughout the strain survey aircraft. At the other two tracking locations, the strain time histories were derived from single strain gauges installed in close proximity to the tracking locations. Multiple regression methods and input data configurations were evaluated in order to identify an appropriate regression method that predicts a maximum stress per flight accurately without over-fitting the training data. MERC identified that the relationship between parametric flight data and aircraft component strain can be exploited to a high level of accuracy using machine learning regression tools. Achieving a high level of accuracy required an extensive review of independent and dependent variable data quality and thoughtful consideration of model inputs." @default.
- W4312414991 created "2023-01-04" @default.
- W4312414991 creator A5017184434 @default.
- W4312414991 creator A5065541397 @default.
- W4312414991 creator A5071537769 @default.
- W4312414991 date "2021-05-10" @default.
- W4312414991 modified "2023-10-16" @default.
- W4312414991 title "Predicting a Maximum Stress using Machine Learning and Parametric Flight Data" @default.
- W4312414991 doi "https://doi.org/10.4050/f-0077-2021-16805" @default.
- W4312414991 hasPublicationYear "2021" @default.
- W4312414991 type Work @default.
- W4312414991 citedByCount "0" @default.
- W4312414991 crossrefType "proceedings-article" @default.
- W4312414991 hasAuthorship W4312414991A5017184434 @default.
- W4312414991 hasAuthorship W4312414991A5065541397 @default.
- W4312414991 hasAuthorship W4312414991A5071537769 @default.
- W4312414991 hasConcept C105795698 @default.
- W4312414991 hasConcept C117251300 @default.
- W4312414991 hasConcept C119857082 @default.
- W4312414991 hasConcept C127413603 @default.
- W4312414991 hasConcept C133462117 @default.
- W4312414991 hasConcept C138885662 @default.
- W4312414991 hasConcept C146978453 @default.
- W4312414991 hasConcept C152877465 @default.
- W4312414991 hasConcept C154945302 @default.
- W4312414991 hasConcept C205167488 @default.
- W4312414991 hasConcept C21036866 @default.
- W4312414991 hasConcept C33923547 @default.
- W4312414991 hasConcept C41008148 @default.
- W4312414991 hasConcept C41895202 @default.
- W4312414991 hasConcept C44154836 @default.
- W4312414991 hasConcept C50644808 @default.
- W4312414991 hasConcept C60584519 @default.
- W4312414991 hasConcept C66938386 @default.
- W4312414991 hasConceptScore W4312414991C105795698 @default.
- W4312414991 hasConceptScore W4312414991C117251300 @default.
- W4312414991 hasConceptScore W4312414991C119857082 @default.
- W4312414991 hasConceptScore W4312414991C127413603 @default.
- W4312414991 hasConceptScore W4312414991C133462117 @default.
- W4312414991 hasConceptScore W4312414991C138885662 @default.
- W4312414991 hasConceptScore W4312414991C146978453 @default.
- W4312414991 hasConceptScore W4312414991C152877465 @default.
- W4312414991 hasConceptScore W4312414991C154945302 @default.
- W4312414991 hasConceptScore W4312414991C205167488 @default.
- W4312414991 hasConceptScore W4312414991C21036866 @default.
- W4312414991 hasConceptScore W4312414991C33923547 @default.
- W4312414991 hasConceptScore W4312414991C41008148 @default.
- W4312414991 hasConceptScore W4312414991C41895202 @default.
- W4312414991 hasConceptScore W4312414991C44154836 @default.
- W4312414991 hasConceptScore W4312414991C50644808 @default.
- W4312414991 hasConceptScore W4312414991C60584519 @default.
- W4312414991 hasConceptScore W4312414991C66938386 @default.
- W4312414991 hasLocation W43124149911 @default.
- W4312414991 hasOpenAccess W4312414991 @default.
- W4312414991 hasPrimaryLocation W43124149911 @default.
- W4312414991 hasRelatedWork W1607644797 @default.
- W4312414991 hasRelatedWork W173561890 @default.
- W4312414991 hasRelatedWork W2368380001 @default.
- W4312414991 hasRelatedWork W2386387936 @default.
- W4312414991 hasRelatedWork W2605366376 @default.
- W4312414991 hasRelatedWork W2734593056 @default.
- W4312414991 hasRelatedWork W2899084033 @default.
- W4312414991 hasRelatedWork W3107474891 @default.
- W4312414991 hasRelatedWork W4244366570 @default.
- W4312414991 hasRelatedWork W250926143 @default.
- W4312414991 isParatext "false" @default.
- W4312414991 isRetracted "false" @default.
- W4312414991 workType "article" @default.