Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312421915> ?p ?o ?g. }
- W4312421915 endingPage "1774" @default.
- W4312421915 startingPage "1761" @default.
- W4312421915 abstract "With the help of unmanned aerial vehicle (UAV), remote terminals that out of wireless coverage can be connected to the Internet of Things (IoT) networks. Currently, the IoT relies on a large number of low-cost wireless sensors with limited energy supply to realize ubiquitous monitoring and intelligent control. The hybrid-powered networks composed of wireless-powered communication (WPC) terminal and solar-powered UAV can solve the energy supply problem of the IoT networks, and the nonorthogonal multiple access (NOMA) technique can solve the massive access problem of IoT terminals. Exploiting these benefits, we investigate joint UAV 3-D trajectory design and time allocation for aerial data collection in hybrid-powered NOMA-IoT networks. To maximize the total fair network throughput, we jointly consider energy limitation, Quality of Service (QoS) requirements, and flight conditions. The problem is nonconvex and time-dimension coupled which is intractable to solve by traditional optimization methods. Therefore, we develop a deep reinforcement learning (DRL) algorithm called fair communication is accomplished by trajectory design and time allocation (FC-TDTA), which uses the deep deterministic policy gradient (DDPG) as its basis. Simulation results show that our proposed algorithm performs better than benchmarks in fair throughput maximization. The proposed FC-TDTA algorithm can make the UAV: 1) fly in appropriate direction and speed, so that the UAV can arrive at the charging station before the energy runs out and 2) conduct WPC energy transmission and data collection to achieve fair communication." @default.
- W4312421915 created "2023-01-04" @default.
- W4312421915 creator A5030777006 @default.
- W4312421915 creator A5033045856 @default.
- W4312421915 creator A5046575943 @default.
- W4312421915 creator A5067752665 @default.
- W4312421915 creator A5077319363 @default.
- W4312421915 date "2023-01-15" @default.
- W4312421915 modified "2023-10-17" @default.
- W4312421915 title "Deep Reinforcement Learning for Aerial Data Collection in Hybrid-Powered NOMA-IoT Networks" @default.
- W4312421915 cites W2509696551 @default.
- W4312421915 cites W2510173137 @default.
- W4312421915 cites W2582415183 @default.
- W4312421915 cites W2604830243 @default.
- W4312421915 cites W2740005962 @default.
- W4312421915 cites W2777180355 @default.
- W4312421915 cites W2783184536 @default.
- W4312421915 cites W2806576037 @default.
- W4312421915 cites W2808024203 @default.
- W4312421915 cites W2887592610 @default.
- W4312421915 cites W2895691654 @default.
- W4312421915 cites W2897479511 @default.
- W4312421915 cites W2919115771 @default.
- W4312421915 cites W2924948991 @default.
- W4312421915 cites W2925554975 @default.
- W4312421915 cites W2963061782 @default.
- W4312421915 cites W2963385511 @default.
- W4312421915 cites W2963835875 @default.
- W4312421915 cites W2964018918 @default.
- W4312421915 cites W2964023906 @default.
- W4312421915 cites W2973697444 @default.
- W4312421915 cites W2984170233 @default.
- W4312421915 cites W3010609595 @default.
- W4312421915 cites W3014233392 @default.
- W4312421915 cites W3022404363 @default.
- W4312421915 cites W3024776269 @default.
- W4312421915 cites W3031133730 @default.
- W4312421915 cites W3036562625 @default.
- W4312421915 cites W3037051439 @default.
- W4312421915 cites W3037136508 @default.
- W4312421915 cites W3044709444 @default.
- W4312421915 cites W3048225194 @default.
- W4312421915 cites W3051352583 @default.
- W4312421915 cites W3084578038 @default.
- W4312421915 cites W3100532295 @default.
- W4312421915 cites W3101115706 @default.
- W4312421915 cites W3101650196 @default.
- W4312421915 cites W3102027520 @default.
- W4312421915 cites W3102402089 @default.
- W4312421915 cites W3102527375 @default.
- W4312421915 cites W3159790943 @default.
- W4312421915 cites W3167580222 @default.
- W4312421915 cites W3169114806 @default.
- W4312421915 cites W3176727369 @default.
- W4312421915 cites W4210368431 @default.
- W4312421915 cites W4220870950 @default.
- W4312421915 doi "https://doi.org/10.1109/jiot.2022.3209980" @default.
- W4312421915 hasPublicationYear "2023" @default.
- W4312421915 type Work @default.
- W4312421915 citedByCount "3" @default.
- W4312421915 countsByYear W43124219152023 @default.
- W4312421915 crossrefType "journal-article" @default.
- W4312421915 hasAuthorship W4312421915A5030777006 @default.
- W4312421915 hasAuthorship W4312421915A5033045856 @default.
- W4312421915 hasAuthorship W4312421915A5046575943 @default.
- W4312421915 hasAuthorship W4312421915A5067752665 @default.
- W4312421915 hasAuthorship W4312421915A5077319363 @default.
- W4312421915 hasConcept C108037233 @default.
- W4312421915 hasConcept C119599485 @default.
- W4312421915 hasConcept C120314980 @default.
- W4312421915 hasConcept C127413603 @default.
- W4312421915 hasConcept C154945302 @default.
- W4312421915 hasConcept C157764524 @default.
- W4312421915 hasConcept C2742236 @default.
- W4312421915 hasConcept C31258907 @default.
- W4312421915 hasConcept C41008148 @default.
- W4312421915 hasConcept C5119721 @default.
- W4312421915 hasConcept C54355233 @default.
- W4312421915 hasConcept C555944384 @default.
- W4312421915 hasConcept C59519942 @default.
- W4312421915 hasConcept C76155785 @default.
- W4312421915 hasConcept C79403827 @default.
- W4312421915 hasConcept C86803240 @default.
- W4312421915 hasConcept C97541855 @default.
- W4312421915 hasConceptScore W4312421915C108037233 @default.
- W4312421915 hasConceptScore W4312421915C119599485 @default.
- W4312421915 hasConceptScore W4312421915C120314980 @default.
- W4312421915 hasConceptScore W4312421915C127413603 @default.
- W4312421915 hasConceptScore W4312421915C154945302 @default.
- W4312421915 hasConceptScore W4312421915C157764524 @default.
- W4312421915 hasConceptScore W4312421915C2742236 @default.
- W4312421915 hasConceptScore W4312421915C31258907 @default.
- W4312421915 hasConceptScore W4312421915C41008148 @default.
- W4312421915 hasConceptScore W4312421915C5119721 @default.
- W4312421915 hasConceptScore W4312421915C54355233 @default.
- W4312421915 hasConceptScore W4312421915C555944384 @default.
- W4312421915 hasConceptScore W4312421915C59519942 @default.
- W4312421915 hasConceptScore W4312421915C76155785 @default.