Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312425087> ?p ?o ?g. }
- W4312425087 abstract "Image denoising has achieved unprecedented progress as great efforts have been made to exploit effective deep denoisers. To improve the denoising performance in real-world, two typical solutions are used in recent trends: devising better noise models for the synthesis of more realistic training data, and estimating noise level function to guide non-blind denoisers. In this work, we combine both noise modeling and estimation, and propose an innovative noise model estimation and noise synthesis pipeline for realistic noisy image generation. Specifically, our model learns a noise estimation model with fine-grained statistical noise model in a contrastive manner. Then, we use the estimated noise parameters to model camera-specific noise distribution, and synthesize realistic noisy training data. The most striking thing for our work is that by calibrating noise models of several sensors, our model can be extended to predict other cameras. In other words, we can estimate camera-specific noise models for unknown sensors with only testing images, without laborious calibration frames or paired noisy/clean data. The proposed pipeline endows deep denoisers with competitive performances with state-of-the-art real noise modeling methods." @default.
- W4312425087 created "2023-01-04" @default.
- W4312425087 creator A5031428683 @default.
- W4312425087 creator A5067800206 @default.
- W4312425087 date "2022-06-01" @default.
- W4312425087 modified "2023-10-06" @default.
- W4312425087 title "Estimating Fine-Grained Noise Model via Contrastive Learning" @default.
- W4312425087 cites W1986830331 @default.
- W4312425087 cites W1993648443 @default.
- W4312425087 cites W2023005931 @default.
- W4312425087 cites W2043220014 @default.
- W4312425087 cites W2052452674 @default.
- W4312425087 cites W2056370875 @default.
- W4312425087 cites W2062515778 @default.
- W4312425087 cites W2067098972 @default.
- W4312425087 cites W2097073572 @default.
- W4312425087 cites W2108238208 @default.
- W4312425087 cites W2136035751 @default.
- W4312425087 cites W2154017467 @default.
- W4312425087 cites W2160547390 @default.
- W4312425087 cites W2162266621 @default.
- W4312425087 cites W2163446914 @default.
- W4312425087 cites W2164488798 @default.
- W4312425087 cites W2219841864 @default.
- W4312425087 cites W2474817805 @default.
- W4312425087 cites W2508457857 @default.
- W4312425087 cites W2570987625 @default.
- W4312425087 cites W2799192307 @default.
- W4312425087 cites W2799265886 @default.
- W4312425087 cites W2952323569 @default.
- W4312425087 cites W2997508111 @default.
- W4312425087 cites W3034233131 @default.
- W4312425087 cites W3046204617 @default.
- W4312425087 cites W3104725225 @default.
- W4312425087 cites W3110194847 @default.
- W4312425087 cites W3119741437 @default.
- W4312425087 cites W3183780241 @default.
- W4312425087 cites W3189845786 @default.
- W4312425087 cites W3204358387 @default.
- W4312425087 cites W4214701710 @default.
- W4312425087 cites W4237777900 @default.
- W4312425087 doi "https://doi.org/10.1109/cvpr52688.2022.01235" @default.
- W4312425087 hasPublicationYear "2022" @default.
- W4312425087 type Work @default.
- W4312425087 citedByCount "4" @default.
- W4312425087 countsByYear W43124250872022 @default.
- W4312425087 countsByYear W43124250872023 @default.
- W4312425087 crossrefType "proceedings-article" @default.
- W4312425087 hasAuthorship W4312425087A5031428683 @default.
- W4312425087 hasAuthorship W4312425087A5067800206 @default.
- W4312425087 hasBestOaLocation W43124250872 @default.
- W4312425087 hasConcept C106430172 @default.
- W4312425087 hasConcept C115961682 @default.
- W4312425087 hasConcept C1160358 @default.
- W4312425087 hasConcept C119857082 @default.
- W4312425087 hasConcept C153180895 @default.
- W4312425087 hasConcept C154945302 @default.
- W4312425087 hasConcept C163294075 @default.
- W4312425087 hasConcept C182163834 @default.
- W4312425087 hasConcept C187612029 @default.
- W4312425087 hasConcept C199360897 @default.
- W4312425087 hasConcept C200378446 @default.
- W4312425087 hasConcept C29265498 @default.
- W4312425087 hasConcept C31972630 @default.
- W4312425087 hasConcept C35772409 @default.
- W4312425087 hasConcept C41008148 @default.
- W4312425087 hasConcept C43521106 @default.
- W4312425087 hasConcept C67186912 @default.
- W4312425087 hasConcept C77088390 @default.
- W4312425087 hasConcept C9417928 @default.
- W4312425087 hasConcept C99498987 @default.
- W4312425087 hasConceptScore W4312425087C106430172 @default.
- W4312425087 hasConceptScore W4312425087C115961682 @default.
- W4312425087 hasConceptScore W4312425087C1160358 @default.
- W4312425087 hasConceptScore W4312425087C119857082 @default.
- W4312425087 hasConceptScore W4312425087C153180895 @default.
- W4312425087 hasConceptScore W4312425087C154945302 @default.
- W4312425087 hasConceptScore W4312425087C163294075 @default.
- W4312425087 hasConceptScore W4312425087C182163834 @default.
- W4312425087 hasConceptScore W4312425087C187612029 @default.
- W4312425087 hasConceptScore W4312425087C199360897 @default.
- W4312425087 hasConceptScore W4312425087C200378446 @default.
- W4312425087 hasConceptScore W4312425087C29265498 @default.
- W4312425087 hasConceptScore W4312425087C31972630 @default.
- W4312425087 hasConceptScore W4312425087C35772409 @default.
- W4312425087 hasConceptScore W4312425087C41008148 @default.
- W4312425087 hasConceptScore W4312425087C43521106 @default.
- W4312425087 hasConceptScore W4312425087C67186912 @default.
- W4312425087 hasConceptScore W4312425087C77088390 @default.
- W4312425087 hasConceptScore W4312425087C9417928 @default.
- W4312425087 hasConceptScore W4312425087C99498987 @default.
- W4312425087 hasFunder F4320321001 @default.
- W4312425087 hasLocation W43124250871 @default.
- W4312425087 hasLocation W43124250872 @default.
- W4312425087 hasOpenAccess W4312425087 @default.
- W4312425087 hasPrimaryLocation W43124250871 @default.
- W4312425087 hasRelatedWork W1964290457 @default.
- W4312425087 hasRelatedWork W1969252538 @default.
- W4312425087 hasRelatedWork W1993096516 @default.
- W4312425087 hasRelatedWork W2013771251 @default.