Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312450595> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4312450595 endingPage "1" @default.
- W4312450595 startingPage "1" @default.
- W4312450595 abstract "In this proposed work, temperature sensors, namely, a thermocouple and thermistor were linearized using deep neural networks. The deep feedforward neural network (DFNN) technique was proposed to linearize the K-type thermocouple’s output, in the given temperature range −100 °C to 1372 °C, while nonlinearity was reduced from 2.03% to 0.002% full scale span (FSS). Deep layer recurrent neural network (DLR-NN) was used to reduce the nonlinearity of a negative temperature coefficient (NTC) thermistor from 84.63% to 0.13% FSS. The linearized thermistor was used for cold junction compensation (CJC) of the thermocouple. In both the thermocouple and thermistor, linearization was achieved in a single stage for a wide range digitally using deep neural networks alone. There were no analog pre-signal conditioning circuits, unlike the existing neural network-based linearization techniques in literature. A hardware setup of a stand-alone module for linearization was designed using the Raspberry pi microcontroller consisting of two soft modules, one for thermocouple linearization and the other for thermistor linearization. The proposed system was experimentally tested using a K-type thermocouple on a thermal calibrator in a 0 °C–300 °C range. The cold junction compensated output of the thermocouple had a maximum absolute error of 0.34 °C when ambient temperature varied from 0 °C to 40 °C. The results were satisfactory and better than the existing National Institute of Standards and Technology (NIST) standard. This linearization technique can be extended to other thermocouple types as well as other nonlinear sensors." @default.
- W4312450595 created "2023-01-04" @default.
- W4312450595 creator A5031209972 @default.
- W4312450595 creator A5052935683 @default.
- W4312450595 creator A5072908811 @default.
- W4312450595 date "2022-01-01" @default.
- W4312450595 modified "2023-09-25" @default.
- W4312450595 title "Deep Neural Network Based Linearization and Cold Junction Compensation of Thermocouple" @default.
- W4312450595 cites W1840297335 @default.
- W4312450595 cites W2009219499 @default.
- W4312450595 cites W2050813174 @default.
- W4312450595 cites W2053527001 @default.
- W4312450595 cites W2060477610 @default.
- W4312450595 cites W2137571291 @default.
- W4312450595 cites W2140925059 @default.
- W4312450595 cites W2274631373 @default.
- W4312450595 cites W2314055824 @default.
- W4312450595 cites W2320129514 @default.
- W4312450595 cites W2329862259 @default.
- W4312450595 cites W2404440973 @default.
- W4312450595 cites W2770847824 @default.
- W4312450595 cites W2790735830 @default.
- W4312450595 cites W2980611878 @default.
- W4312450595 cites W3005531824 @default.
- W4312450595 cites W4200260161 @default.
- W4312450595 cites W4289793254 @default.
- W4312450595 doi "https://doi.org/10.1109/tim.2022.3227982" @default.
- W4312450595 hasPublicationYear "2022" @default.
- W4312450595 type Work @default.
- W4312450595 citedByCount "0" @default.
- W4312450595 crossrefType "journal-article" @default.
- W4312450595 hasAuthorship W4312450595A5031209972 @default.
- W4312450595 hasAuthorship W4312450595A5052935683 @default.
- W4312450595 hasAuthorship W4312450595A5072908811 @default.
- W4312450595 hasConcept C11171543 @default.
- W4312450595 hasConcept C11210021 @default.
- W4312450595 hasConcept C119599485 @default.
- W4312450595 hasConcept C121332964 @default.
- W4312450595 hasConcept C127413603 @default.
- W4312450595 hasConcept C154945302 @default.
- W4312450595 hasConcept C15744967 @default.
- W4312450595 hasConcept C158622935 @default.
- W4312450595 hasConcept C168068576 @default.
- W4312450595 hasConcept C192562407 @default.
- W4312450595 hasConcept C24326235 @default.
- W4312450595 hasConcept C2775924081 @default.
- W4312450595 hasConcept C2780023022 @default.
- W4312450595 hasConcept C41008148 @default.
- W4312450595 hasConcept C47446073 @default.
- W4312450595 hasConcept C50644808 @default.
- W4312450595 hasConcept C62520636 @default.
- W4312450595 hasConcept C66726788 @default.
- W4312450595 hasConcept C72293138 @default.
- W4312450595 hasConcept C77170095 @default.
- W4312450595 hasConceptScore W4312450595C11171543 @default.
- W4312450595 hasConceptScore W4312450595C11210021 @default.
- W4312450595 hasConceptScore W4312450595C119599485 @default.
- W4312450595 hasConceptScore W4312450595C121332964 @default.
- W4312450595 hasConceptScore W4312450595C127413603 @default.
- W4312450595 hasConceptScore W4312450595C154945302 @default.
- W4312450595 hasConceptScore W4312450595C15744967 @default.
- W4312450595 hasConceptScore W4312450595C158622935 @default.
- W4312450595 hasConceptScore W4312450595C168068576 @default.
- W4312450595 hasConceptScore W4312450595C192562407 @default.
- W4312450595 hasConceptScore W4312450595C24326235 @default.
- W4312450595 hasConceptScore W4312450595C2775924081 @default.
- W4312450595 hasConceptScore W4312450595C2780023022 @default.
- W4312450595 hasConceptScore W4312450595C41008148 @default.
- W4312450595 hasConceptScore W4312450595C47446073 @default.
- W4312450595 hasConceptScore W4312450595C50644808 @default.
- W4312450595 hasConceptScore W4312450595C62520636 @default.
- W4312450595 hasConceptScore W4312450595C66726788 @default.
- W4312450595 hasConceptScore W4312450595C72293138 @default.
- W4312450595 hasConceptScore W4312450595C77170095 @default.
- W4312450595 hasLocation W43124505951 @default.
- W4312450595 hasOpenAccess W4312450595 @default.
- W4312450595 hasPrimaryLocation W43124505951 @default.
- W4312450595 hasRelatedWork W2166692470 @default.
- W4312450595 hasRelatedWork W2351970356 @default.
- W4312450595 hasRelatedWork W2361930022 @default.
- W4312450595 hasRelatedWork W2368432489 @default.
- W4312450595 hasRelatedWork W2553745318 @default.
- W4312450595 hasRelatedWork W2915606287 @default.
- W4312450595 hasRelatedWork W2967759220 @default.
- W4312450595 hasRelatedWork W3017176690 @default.
- W4312450595 hasRelatedWork W3033649785 @default.
- W4312450595 hasRelatedWork W851599003 @default.
- W4312450595 isParatext "false" @default.
- W4312450595 isRetracted "false" @default.
- W4312450595 workType "article" @default.