Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312451875> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4312451875 abstract "In recent years, kernel-based methods and Deep Learning (DL) models have become the two most successful Remote Sensing (RS) analysis techniques for various Earth observations, particularly hyperspectral images. However, kernel-based methods are generally considered shallow models and intrinsically inconsistent with end-to-end learning. On the other hand, end-to-end learning is one of DL models' essential features as it seems to be responsible for their proven higher performances. Nevertheless, kernel methods are based on rigid mathematical theory and can efficiently cope with high-dimensional data. This paper proposed a hybrid deep kernel model to benefit from both kernel-based methods and DL models. This novel deep kernel model, namely Convolutional Kernel Network (CKN), was applied to two benchmark hyperspectral image datasets. Moreover, the proposed hybrid method was compared to Support Vector Machine (SVM) classifiers with various kernel functions. The experimental results indicated that the CKN's outperforms SVM." @default.
- W4312451875 created "2023-01-04" @default.
- W4312451875 creator A5016852663 @default.
- W4312451875 creator A5031210384 @default.
- W4312451875 creator A5063724972 @default.
- W4312451875 creator A5077650789 @default.
- W4312451875 creator A5078970832 @default.
- W4312451875 date "2022-07-17" @default.
- W4312451875 modified "2023-09-27" @default.
- W4312451875 title "Convolutional Deep Kernel Method for Land Cover Mapping from Hyperspectral Imagery" @default.
- W4312451875 cites W2141705618 @default.
- W4312451875 cites W2753797983 @default.
- W4312451875 cites W2964211601 @default.
- W4312451875 cites W2981012098 @default.
- W4312451875 cites W2981317100 @default.
- W4312451875 cites W2996798951 @default.
- W4312451875 cites W3092342941 @default.
- W4312451875 cites W3100011500 @default.
- W4312451875 cites W3133793930 @default.
- W4312451875 cites W3189388292 @default.
- W4312451875 cites W3208282496 @default.
- W4312451875 cites W4200605141 @default.
- W4312451875 doi "https://doi.org/10.1109/igarss46834.2022.9883309" @default.
- W4312451875 hasPublicationYear "2022" @default.
- W4312451875 type Work @default.
- W4312451875 citedByCount "0" @default.
- W4312451875 crossrefType "proceedings-article" @default.
- W4312451875 hasAuthorship W4312451875A5016852663 @default.
- W4312451875 hasAuthorship W4312451875A5031210384 @default.
- W4312451875 hasAuthorship W4312451875A5063724972 @default.
- W4312451875 hasAuthorship W4312451875A5077650789 @default.
- W4312451875 hasAuthorship W4312451875A5078970832 @default.
- W4312451875 hasConcept C108583219 @default.
- W4312451875 hasConcept C114614502 @default.
- W4312451875 hasConcept C119857082 @default.
- W4312451875 hasConcept C122280245 @default.
- W4312451875 hasConcept C12267149 @default.
- W4312451875 hasConcept C13280743 @default.
- W4312451875 hasConcept C134517425 @default.
- W4312451875 hasConcept C140417398 @default.
- W4312451875 hasConcept C153180895 @default.
- W4312451875 hasConcept C154945302 @default.
- W4312451875 hasConcept C159078339 @default.
- W4312451875 hasConcept C185798385 @default.
- W4312451875 hasConcept C205649164 @default.
- W4312451875 hasConcept C33923547 @default.
- W4312451875 hasConcept C41008148 @default.
- W4312451875 hasConcept C74193536 @default.
- W4312451875 hasConcept C75866337 @default.
- W4312451875 hasConcept C81363708 @default.
- W4312451875 hasConceptScore W4312451875C108583219 @default.
- W4312451875 hasConceptScore W4312451875C114614502 @default.
- W4312451875 hasConceptScore W4312451875C119857082 @default.
- W4312451875 hasConceptScore W4312451875C122280245 @default.
- W4312451875 hasConceptScore W4312451875C12267149 @default.
- W4312451875 hasConceptScore W4312451875C13280743 @default.
- W4312451875 hasConceptScore W4312451875C134517425 @default.
- W4312451875 hasConceptScore W4312451875C140417398 @default.
- W4312451875 hasConceptScore W4312451875C153180895 @default.
- W4312451875 hasConceptScore W4312451875C154945302 @default.
- W4312451875 hasConceptScore W4312451875C159078339 @default.
- W4312451875 hasConceptScore W4312451875C185798385 @default.
- W4312451875 hasConceptScore W4312451875C205649164 @default.
- W4312451875 hasConceptScore W4312451875C33923547 @default.
- W4312451875 hasConceptScore W4312451875C41008148 @default.
- W4312451875 hasConceptScore W4312451875C74193536 @default.
- W4312451875 hasConceptScore W4312451875C75866337 @default.
- W4312451875 hasConceptScore W4312451875C81363708 @default.
- W4312451875 hasLocation W43124518751 @default.
- W4312451875 hasOpenAccess W4312451875 @default.
- W4312451875 hasPrimaryLocation W43124518751 @default.
- W4312451875 hasRelatedWork W1550105856 @default.
- W4312451875 hasRelatedWork W1558903433 @default.
- W4312451875 hasRelatedWork W1969163824 @default.
- W4312451875 hasRelatedWork W2027376491 @default.
- W4312451875 hasRelatedWork W2092483655 @default.
- W4312451875 hasRelatedWork W2189183545 @default.
- W4312451875 hasRelatedWork W2604913466 @default.
- W4312451875 hasRelatedWork W2898882859 @default.
- W4312451875 hasRelatedWork W2963372274 @default.
- W4312451875 hasRelatedWork W4300176214 @default.
- W4312451875 isParatext "false" @default.
- W4312451875 isRetracted "false" @default.
- W4312451875 workType "article" @default.