Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312454321> ?p ?o ?g. }
- W4312454321 endingPage "296" @default.
- W4312454321 startingPage "277" @default.
- W4312454321 abstract "Seabed inspection is one of the most sought-after applications for autonomous underwater vehicles (AUVs). Acoustical sensors, such as side-scan sonars and forward-looking sonars (FLSs), are commonly favored over optical cameras to carry out such a task. Indeed, sonars are not influenced by illumination conditions and can provide high-range data. However, due to the lack of features and low resolution, acoustical images are often hard to interpret with conventional automatic techniques, forcing human operators to analyze thousands of collected images to identify the so-called objects of potential interest (OPIs). In this article, we report the development of an automatic target recognition (ATR) methodology to identify and localize OPIs in FLS imagery. Such detections have been then exploited to realize a virtual world model with the probabilistic multiple hypothesis anchoring data association and model tracking algorithm. Distinct models of convolutional neural networks have been trained with a data set acquired in May 2019 at the Naval Support and Experimentation Centre (Centro di Supporto e Sperimentazione Navale—CSSN) basin in La Spezia, Italy. The ATR strategy has been successfully validated offline with the data gathered in October 2019 in the same site where the seabed targets were replaced and relocated. As regards the world modeling technique, it has been preliminarily tested on a simulated scenario built upon unmanned underwater vehicle Simulator. Finally, both the ATR and world modeling systems were on-field tested in October 2020 at the CSSN basin in a multivehicle architecture by employing an acoustical channel between FeelHippo AUV and an autonomous moving buoy." @default.
- W4312454321 created "2023-01-04" @default.
- W4312454321 creator A5005655028 @default.
- W4312454321 creator A5007445956 @default.
- W4312454321 creator A5011960231 @default.
- W4312454321 creator A5041907228 @default.
- W4312454321 creator A5042439953 @default.
- W4312454321 creator A5079170360 @default.
- W4312454321 creator A5079507780 @default.
- W4312454321 creator A5081547496 @default.
- W4312454321 date "2023-04-01" @default.
- W4312454321 modified "2023-09-25" @default.
- W4312454321 title "Autonomous Underwater Environment Perceiving and Modeling: An Experimental Campaign With FeelHippo AUV for Forward Looking Sonar-Based Automatic Target Recognition and Data Association" @default.
- W4312454321 cites W1816460154 @default.
- W4312454321 cites W1972627201 @default.
- W4312454321 cites W1978791302 @default.
- W4312454321 cites W1984460673 @default.
- W4312454321 cites W1988932184 @default.
- W4312454321 cites W2014787937 @default.
- W4312454321 cites W2021082829 @default.
- W4312454321 cites W2030547577 @default.
- W4312454321 cites W2042544380 @default.
- W4312454321 cites W2049771613 @default.
- W4312454321 cites W2083401481 @default.
- W4312454321 cites W2096084339 @default.
- W4312454321 cites W2097117768 @default.
- W4312454321 cites W2127923214 @default.
- W4312454321 cites W2131798141 @default.
- W4312454321 cites W2133815132 @default.
- W4312454321 cites W2144692139 @default.
- W4312454321 cites W2148295611 @default.
- W4312454321 cites W2179022541 @default.
- W4312454321 cites W2179600242 @default.
- W4312454321 cites W2237571475 @default.
- W4312454321 cites W2345224179 @default.
- W4312454321 cites W2557728737 @default.
- W4312454321 cites W2562989614 @default.
- W4312454321 cites W2563150812 @default.
- W4312454321 cites W2564183257 @default.
- W4312454321 cites W2618530766 @default.
- W4312454321 cites W2726851649 @default.
- W4312454321 cites W2730200455 @default.
- W4312454321 cites W2765499997 @default.
- W4312454321 cites W2892924320 @default.
- W4312454321 cites W2924884929 @default.
- W4312454321 cites W2963037989 @default.
- W4312454321 cites W2963150697 @default.
- W4312454321 cites W2980040117 @default.
- W4312454321 cites W3002692457 @default.
- W4312454321 cites W3006593729 @default.
- W4312454321 cites W3007107381 @default.
- W4312454321 cites W3082243195 @default.
- W4312454321 cites W3088544613 @default.
- W4312454321 cites W3093955010 @default.
- W4312454321 cites W3107587607 @default.
- W4312454321 cites W3107655300 @default.
- W4312454321 cites W3109277276 @default.
- W4312454321 cites W3153613687 @default.
- W4312454321 cites W4249074720 @default.
- W4312454321 cites W639708223 @default.
- W4312454321 doi "https://doi.org/10.1109/joe.2022.3209719" @default.
- W4312454321 hasPublicationYear "2023" @default.
- W4312454321 type Work @default.
- W4312454321 citedByCount "2" @default.
- W4312454321 countsByYear W43124543212023 @default.
- W4312454321 crossrefType "journal-article" @default.
- W4312454321 hasAuthorship W4312454321A5005655028 @default.
- W4312454321 hasAuthorship W4312454321A5007445956 @default.
- W4312454321 hasAuthorship W4312454321A5011960231 @default.
- W4312454321 hasAuthorship W4312454321A5041907228 @default.
- W4312454321 hasAuthorship W4312454321A5042439953 @default.
- W4312454321 hasAuthorship W4312454321A5079170360 @default.
- W4312454321 hasAuthorship W4312454321A5079507780 @default.
- W4312454321 hasAuthorship W4312454321A5081547496 @default.
- W4312454321 hasBestOaLocation W43124543211 @default.
- W4312454321 hasConcept C111368507 @default.
- W4312454321 hasConcept C117623542 @default.
- W4312454321 hasConcept C127313418 @default.
- W4312454321 hasConcept C127413603 @default.
- W4312454321 hasConcept C154945302 @default.
- W4312454321 hasConcept C199104240 @default.
- W4312454321 hasConcept C31972630 @default.
- W4312454321 hasConcept C41008148 @default.
- W4312454321 hasConcept C555745239 @default.
- W4312454321 hasConcept C81363708 @default.
- W4312454321 hasConcept C87360688 @default.
- W4312454321 hasConcept C98083399 @default.
- W4312454321 hasConceptScore W4312454321C111368507 @default.
- W4312454321 hasConceptScore W4312454321C117623542 @default.
- W4312454321 hasConceptScore W4312454321C127313418 @default.
- W4312454321 hasConceptScore W4312454321C127413603 @default.
- W4312454321 hasConceptScore W4312454321C154945302 @default.
- W4312454321 hasConceptScore W4312454321C199104240 @default.
- W4312454321 hasConceptScore W4312454321C31972630 @default.
- W4312454321 hasConceptScore W4312454321C41008148 @default.
- W4312454321 hasConceptScore W4312454321C555745239 @default.
- W4312454321 hasConceptScore W4312454321C81363708 @default.
- W4312454321 hasConceptScore W4312454321C87360688 @default.