Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312457904> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4312457904 abstract "Tables are widely used in several types of documents since they can bring important information in a structured way. In scientific papers, tables can sum up novel discoveries and summarize experimental results, making the research comparable and easily understandable by scholars. Several methods perform table analysis working on document images, losing useful information during the conversion from the PDF files since OCR tools can be prone to recognition errors, in particular for text inside tables. The main contribution of this work is to tackle the problem of table extraction, exploiting Graph Neural Networks. Node features are enriched with suitably designed representation embeddings. These representations help to better distinguish not only tables from the other parts of the paper, but also table cells from table headers. We experimentally evaluated the proposed approach on a new dataset obtained by merging the information provided in the PubLayNet and PubTables-1M datasets." @default.
- W4312457904 created "2023-01-04" @default.
- W4312457904 creator A5011511343 @default.
- W4312457904 creator A5011610297 @default.
- W4312457904 creator A5043086033 @default.
- W4312457904 date "2022-08-21" @default.
- W4312457904 modified "2023-09-23" @default.
- W4312457904 title "Graph Neural Networks and Representation Embedding for Table Extraction in PDF Documents" @default.
- W4312457904 cites W1603719052 @default.
- W4312457904 cites W2022351003 @default.
- W4312457904 cites W2034797903 @default.
- W4312457904 cites W2062843843 @default.
- W4312457904 cites W2098218583 @default.
- W4312457904 cites W2105693220 @default.
- W4312457904 cites W2116341502 @default.
- W4312457904 cites W2133004463 @default.
- W4312457904 cites W2147800461 @default.
- W4312457904 cites W2250539671 @default.
- W4312457904 cites W2558748708 @default.
- W4312457904 cites W2787835872 @default.
- W4312457904 cites W2962739339 @default.
- W4312457904 cites W2970771982 @default.
- W4312457904 cites W2986271972 @default.
- W4312457904 cites W2998913931 @default.
- W4312457904 cites W3003206728 @default.
- W4312457904 cites W3003711898 @default.
- W4312457904 cites W3034997246 @default.
- W4312457904 cites W3102199783 @default.
- W4312457904 cites W3103940211 @default.
- W4312457904 cites W3113753692 @default.
- W4312457904 cites W3167404434 @default.
- W4312457904 cites W3176384932 @default.
- W4312457904 cites W3200280307 @default.
- W4312457904 cites W3201871940 @default.
- W4312457904 cites W3201922353 @default.
- W4312457904 cites W633457721 @default.
- W4312457904 doi "https://doi.org/10.1109/icpr56361.2022.9956590" @default.
- W4312457904 hasPublicationYear "2022" @default.
- W4312457904 type Work @default.
- W4312457904 citedByCount "3" @default.
- W4312457904 countsByYear W43124579042022 @default.
- W4312457904 countsByYear W43124579042023 @default.
- W4312457904 crossrefType "proceedings-article" @default.
- W4312457904 hasAuthorship W4312457904A5011511343 @default.
- W4312457904 hasAuthorship W4312457904A5011610297 @default.
- W4312457904 hasAuthorship W4312457904A5043086033 @default.
- W4312457904 hasBestOaLocation W43124579042 @default.
- W4312457904 hasConcept C119857082 @default.
- W4312457904 hasConcept C124101348 @default.
- W4312457904 hasConcept C132525143 @default.
- W4312457904 hasConcept C153180895 @default.
- W4312457904 hasConcept C154945302 @default.
- W4312457904 hasConcept C17744445 @default.
- W4312457904 hasConcept C195807954 @default.
- W4312457904 hasConcept C199539241 @default.
- W4312457904 hasConcept C23123220 @default.
- W4312457904 hasConcept C2776359362 @default.
- W4312457904 hasConcept C41008148 @default.
- W4312457904 hasConcept C41608201 @default.
- W4312457904 hasConcept C45235069 @default.
- W4312457904 hasConcept C50644808 @default.
- W4312457904 hasConcept C80444323 @default.
- W4312457904 hasConcept C94625758 @default.
- W4312457904 hasConceptScore W4312457904C119857082 @default.
- W4312457904 hasConceptScore W4312457904C124101348 @default.
- W4312457904 hasConceptScore W4312457904C132525143 @default.
- W4312457904 hasConceptScore W4312457904C153180895 @default.
- W4312457904 hasConceptScore W4312457904C154945302 @default.
- W4312457904 hasConceptScore W4312457904C17744445 @default.
- W4312457904 hasConceptScore W4312457904C195807954 @default.
- W4312457904 hasConceptScore W4312457904C199539241 @default.
- W4312457904 hasConceptScore W4312457904C23123220 @default.
- W4312457904 hasConceptScore W4312457904C2776359362 @default.
- W4312457904 hasConceptScore W4312457904C41008148 @default.
- W4312457904 hasConceptScore W4312457904C41608201 @default.
- W4312457904 hasConceptScore W4312457904C45235069 @default.
- W4312457904 hasConceptScore W4312457904C50644808 @default.
- W4312457904 hasConceptScore W4312457904C80444323 @default.
- W4312457904 hasConceptScore W4312457904C94625758 @default.
- W4312457904 hasLocation W43124579041 @default.
- W4312457904 hasLocation W43124579042 @default.
- W4312457904 hasOpenAccess W4312457904 @default.
- W4312457904 hasPrimaryLocation W43124579041 @default.
- W4312457904 hasRelatedWork W104581431 @default.
- W4312457904 hasRelatedWork W1548492051 @default.
- W4312457904 hasRelatedWork W1788528807 @default.
- W4312457904 hasRelatedWork W1963586751 @default.
- W4312457904 hasRelatedWork W1975174578 @default.
- W4312457904 hasRelatedWork W2153799433 @default.
- W4312457904 hasRelatedWork W2358333365 @default.
- W4312457904 hasRelatedWork W2393978999 @default.
- W4312457904 hasRelatedWork W2725657302 @default.
- W4312457904 hasRelatedWork W1629725936 @default.
- W4312457904 isParatext "false" @default.
- W4312457904 isRetracted "false" @default.
- W4312457904 workType "article" @default.