Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312460076> ?p ?o ?g. }
- W4312460076 endingPage "28" @default.
- W4312460076 startingPage "264376" @default.
- W4312460076 abstract "Article is devoted to the analysis of modern sensors based on silicon nanowires (SiNWs) to determine the influence of SiNWs synthesis parameters and their structural features on device characteristics. A modern trend in the development of electronic sensing devices is the use of various types of nanomaterials in order to increase sensor sensitivity and miniaturize of their size. 1D nanomaterials, namely SiNWs, have several advantages for sensor applications, such as a large surface-to-volume ratio and an increased rate of diffusion of the main charge carriers. Based on the literature analysis, an overview of modern SiNWs sensors was made. The advantages of silicon 1D structures were shown by comparison with other types of nanostructures. Also sensors were classified according to the methods of synthesis of SiNWs, sensor principle operation, kind of input value and types of applied modifiers. Silicon nanowires were most often synthesized by the method of metal-stimulated chemical etching, the advantages of which include the simplicity of implementation, low cost, and the ability to synthesize nanostructures with a high aspect ratio. The vapor-liquid-solid synthesis was also used, the advantages of which include the ability to be adapted to any technology of supplying a gas mixture with the target component and the possibility of obtaining nanowires with a diameter of 10 nm or less. According to the principle operation, the most of sensors developed on the basis of silicon nanowires are of electrical type (resistive, capacitive, electrochemical, diode or transistor type), optical sensors (fluorescent) are developed to a much lesser extent. Gas sensors (ethanol, oil vapor, formaldehyde, ammonia, nitrogen oxide, hydrogen, carbon dioxide,), liquid sensors (glucose, hydrogen peroxide, ethanol, heavy metal ions, pH), and physical values (humidity, temperature and illumination) have been developed on the basis of silicon 1D nanoscale structures. The following surface modifiers of nanowires were used to improve the performance characteristics: noble metal nanoparticles, metal-organic framework structures, carbon nanotubes, graphene, self-assembled monolayers, metal and metal oxide thin films. In particular, it was shown that the modification of the surface of the array of SiNWs with noble metals led to an increase in the sensitivity of the hydrogen sensor by 80%. Modification of formaldehyde sensor using reduced graphene oxide resulted in an improvement of sensor sensitivity by more than 2 times. The influence of SiNWs synthesis parameters on sensor performance characteristics was also determined. In particular, it was shown that increasing of SiNWs width from 20–30 nm to 500–600 nm led to an increase in the sensitivity of humidity sensor from 4.5 to 7.5%. Increasing the etching time caused the synthesis of longer nanowires, which improved the sensitivity of carbon dioxide sensors from 0.6 to 2.5%. Dependences established in this work will make it possible to develop the production technology of various types of sensors based on silicon nanowires with high sensitivity, selectivity, stability and operation speed." @default.
- W4312460076 created "2023-01-04" @default.
- W4312460076 creator A5036053930 @default.
- W4312460076 creator A5045451032 @default.
- W4312460076 date "2022-08-21" @default.
- W4312460076 modified "2023-10-14" @default.
- W4312460076 title "Sensors Based on Nanoscale Silicon 1D Structures for Industrial, Environmental and Medical Monitoring" @default.
- W4312460076 cites W1967695028 @default.
- W4312460076 cites W1973788351 @default.
- W4312460076 cites W1976162354 @default.
- W4312460076 cites W2011699312 @default.
- W4312460076 cites W2015690208 @default.
- W4312460076 cites W2022808973 @default.
- W4312460076 cites W2026568001 @default.
- W4312460076 cites W2028161486 @default.
- W4312460076 cites W2063692935 @default.
- W4312460076 cites W2068686305 @default.
- W4312460076 cites W2089643831 @default.
- W4312460076 cites W2131736319 @default.
- W4312460076 cites W2167914156 @default.
- W4312460076 cites W2190380883 @default.
- W4312460076 cites W2316643990 @default.
- W4312460076 cites W2318401412 @default.
- W4312460076 cites W2332560151 @default.
- W4312460076 cites W2342225873 @default.
- W4312460076 cites W2342795806 @default.
- W4312460076 cites W2426648670 @default.
- W4312460076 cites W2465308377 @default.
- W4312460076 cites W2492204164 @default.
- W4312460076 cites W2621493478 @default.
- W4312460076 cites W2745774856 @default.
- W4312460076 cites W2770003506 @default.
- W4312460076 cites W2791358820 @default.
- W4312460076 cites W2802222992 @default.
- W4312460076 cites W2894002334 @default.
- W4312460076 cites W2897789051 @default.
- W4312460076 cites W2902457459 @default.
- W4312460076 cites W2914977065 @default.
- W4312460076 cites W2938937007 @default.
- W4312460076 cites W2947074994 @default.
- W4312460076 cites W3001798993 @default.
- W4312460076 cites W3007380929 @default.
- W4312460076 cites W3010342261 @default.
- W4312460076 cites W3014309857 @default.
- W4312460076 cites W3023697315 @default.
- W4312460076 cites W3033452866 @default.
- W4312460076 cites W3085778617 @default.
- W4312460076 cites W3102260429 @default.
- W4312460076 cites W3105056035 @default.
- W4312460076 cites W3106762399 @default.
- W4312460076 cites W3112049239 @default.
- W4312460076 cites W3117149573 @default.
- W4312460076 cites W3128839874 @default.
- W4312460076 cites W3134358880 @default.
- W4312460076 cites W3137308282 @default.
- W4312460076 cites W3138357264 @default.
- W4312460076 cites W3148959604 @default.
- W4312460076 cites W3155087194 @default.
- W4312460076 cites W3162096981 @default.
- W4312460076 cites W3175011930 @default.
- W4312460076 cites W3180774545 @default.
- W4312460076 cites W3185468689 @default.
- W4312460076 cites W3202758380 @default.
- W4312460076 cites W3210064608 @default.
- W4312460076 cites W4200205139 @default.
- W4312460076 cites W4205577871 @default.
- W4312460076 cites W4226178301 @default.
- W4312460076 cites W4282920148 @default.
- W4312460076 cites W4301070642 @default.
- W4312460076 cites W4308214116 @default.
- W4312460076 cites W582786582 @default.
- W4312460076 doi "https://doi.org/10.20535/2523-4455.mea.264376" @default.
- W4312460076 hasPublicationYear "2022" @default.
- W4312460076 type Work @default.
- W4312460076 citedByCount "0" @default.
- W4312460076 crossrefType "journal-article" @default.
- W4312460076 hasAuthorship W4312460076A5036053930 @default.
- W4312460076 hasAuthorship W4312460076A5045451032 @default.
- W4312460076 hasBestOaLocation W43124600761 @default.
- W4312460076 hasConcept C100460472 @default.
- W4312460076 hasConcept C108225325 @default.
- W4312460076 hasConcept C119599485 @default.
- W4312460076 hasConcept C127413603 @default.
- W4312460076 hasConcept C138631740 @default.
- W4312460076 hasConcept C171250308 @default.
- W4312460076 hasConcept C192562407 @default.
- W4312460076 hasConcept C206755178 @default.
- W4312460076 hasConcept C2779227376 @default.
- W4312460076 hasConcept C2986665194 @default.
- W4312460076 hasConcept C49040817 @default.
- W4312460076 hasConcept C544956773 @default.
- W4312460076 hasConcept C6899612 @default.
- W4312460076 hasConcept C74214498 @default.
- W4312460076 hasConceptScore W4312460076C100460472 @default.
- W4312460076 hasConceptScore W4312460076C108225325 @default.
- W4312460076 hasConceptScore W4312460076C119599485 @default.
- W4312460076 hasConceptScore W4312460076C127413603 @default.
- W4312460076 hasConceptScore W4312460076C138631740 @default.