Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312476421> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4312476421 abstract "In this paper, we have identified and addressed pressing challenges associated with online and cost-effective malware detection based on Hardware Performance Counters (HPCs) information. Existing Hardware-Assisted Malware Detection (HMD) methods guided by standard Machine Learning (ML) algorithms have limited their study on detecting known signatures of malicious patterns; thus, neglecting to address unknown (zero-day) malware detection at run-time which is a more challenging problem since the malware HPC data does not match any known attack applications’ signatures in the existing database. In addition, prior works have not presented a flexible and balanced solution that considers the trade-off between detection rate and implementation cost for adaptive selection of the best performing ML algorithms for online malware detection. In this paper, we first propose a unified feature selection method based on a heterogeneous feature fusion technique to effectively determine the most important HPC events for low-cost yet accurate malware detection. Next, we present Reinforced-HMD, a novel reinforcement learning-based framework for adaptive and cost-aware hardware-assisted zero-day malware detection based on desired performance metric and available hardware resources. To this aim, six classical and two reinforcement learning algorithms are implemented and their efficiency is thoroughly analyzed for detecting unknown malware using HPC events. Experimental results demonstrate that our Reinforced-HMD framework based on Upper Confidence Bound (UCB) learning approach achieves an accurate and robust detection rate with a 96% in both F1-score and AUC metrics for flexible and efficient zero-day malware detection while utilizing an optimal set of built-in HPC events." @default.
- W4312476421 created "2023-01-05" @default.
- W4312476421 creator A5044003457 @default.
- W4312476421 creator A5047382437 @default.
- W4312476421 creator A5051940611 @default.
- W4312476421 creator A5072969885 @default.
- W4312476421 creator A5080844858 @default.
- W4312476421 date "2022-10-01" @default.
- W4312476421 modified "2023-10-16" @default.
- W4312476421 title "Breakthrough to Adaptive and Cost-Aware Hardware-Assisted Zero-Day Malware Detection: A Reinforcement Learning-Based Approach" @default.
- W4312476421 cites W2034053858 @default.
- W4312476421 cites W2036853599 @default.
- W4312476421 cites W2065890363 @default.
- W4312476421 cites W2082290707 @default.
- W4312476421 cites W2166844173 @default.
- W4312476421 cites W2594364040 @default.
- W4312476421 cites W2602229646 @default.
- W4312476421 cites W2791899846 @default.
- W4312476421 cites W2807415350 @default.
- W4312476421 cites W2932551155 @default.
- W4312476421 cites W2945027786 @default.
- W4312476421 cites W2950774332 @default.
- W4312476421 cites W2955425106 @default.
- W4312476421 cites W2963311060 @default.
- W4312476421 cites W3046195620 @default.
- W4312476421 cites W3047417042 @default.
- W4312476421 cites W3048190600 @default.
- W4312476421 cites W3083161653 @default.
- W4312476421 cites W3083702481 @default.
- W4312476421 cites W3100366369 @default.
- W4312476421 cites W3111712354 @default.
- W4312476421 cites W3134241006 @default.
- W4312476421 cites W4232751114 @default.
- W4312476421 cites W4256383029 @default.
- W4312476421 doi "https://doi.org/10.1109/iccd56317.2022.00042" @default.
- W4312476421 hasPublicationYear "2022" @default.
- W4312476421 type Work @default.
- W4312476421 citedByCount "1" @default.
- W4312476421 countsByYear W43124764212023 @default.
- W4312476421 crossrefType "proceedings-article" @default.
- W4312476421 hasAuthorship W4312476421A5044003457 @default.
- W4312476421 hasAuthorship W4312476421A5047382437 @default.
- W4312476421 hasAuthorship W4312476421A5051940611 @default.
- W4312476421 hasAuthorship W4312476421A5072969885 @default.
- W4312476421 hasAuthorship W4312476421A5080844858 @default.
- W4312476421 hasConcept C111919701 @default.
- W4312476421 hasConcept C119857082 @default.
- W4312476421 hasConcept C148483581 @default.
- W4312476421 hasConcept C154945302 @default.
- W4312476421 hasConcept C41008148 @default.
- W4312476421 hasConcept C541664917 @default.
- W4312476421 hasConcept C95922358 @default.
- W4312476421 hasConcept C97541855 @default.
- W4312476421 hasConceptScore W4312476421C111919701 @default.
- W4312476421 hasConceptScore W4312476421C119857082 @default.
- W4312476421 hasConceptScore W4312476421C148483581 @default.
- W4312476421 hasConceptScore W4312476421C154945302 @default.
- W4312476421 hasConceptScore W4312476421C41008148 @default.
- W4312476421 hasConceptScore W4312476421C541664917 @default.
- W4312476421 hasConceptScore W4312476421C95922358 @default.
- W4312476421 hasConceptScore W4312476421C97541855 @default.
- W4312476421 hasLocation W43124764211 @default.
- W4312476421 hasOpenAccess W4312476421 @default.
- W4312476421 hasPrimaryLocation W43124764211 @default.
- W4312476421 hasRelatedWork W2069496215 @default.
- W4312476421 hasRelatedWork W2921630301 @default.
- W4312476421 hasRelatedWork W3022038857 @default.
- W4312476421 hasRelatedWork W3130682519 @default.
- W4312476421 hasRelatedWork W3174196512 @default.
- W4312476421 hasRelatedWork W3213610575 @default.
- W4312476421 hasRelatedWork W4210605141 @default.
- W4312476421 hasRelatedWork W4212852473 @default.
- W4312476421 hasRelatedWork W4225292389 @default.
- W4312476421 hasRelatedWork W4225360065 @default.
- W4312476421 isParatext "false" @default.
- W4312476421 isRetracted "false" @default.
- W4312476421 workType "article" @default.