Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312495053> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4312495053 endingPage "21" @default.
- W4312495053 startingPage "1" @default.
- W4312495053 abstract "AbstractFor companies it is essential to know the market price of the salaries of their current and prospective employees. Predicting such salaries is challenging, as many factors need to be considered, and large real datasets for learning are scarce. For this reason, research on salary predictions is comparably rare and limited. In this study, we investigate whether and how an advanced machine-learning approach, namely ensembles of random-forest regression, can achieve high-quality salary predictions. We use a large real dataset of more than three million employees and more than 300 professions. Our approach learns –for each profession– a random-forest regression model to predict salaries. In our evaluation, we show that this approach performs better than related work on salary prediction by machine-learning approaches with a mean absolute percentage error (MAPE) of 17.1%. We identify reducing the number of possible values of categorical variables, training separate models as well as outlier handling as the key factors for the results achieved." @default.
- W4312495053 created "2023-01-05" @default.
- W4312495053 creator A5054484992 @default.
- W4312495053 creator A5085297480 @default.
- W4312495053 date "2022-01-01" @default.
- W4312495053 modified "2023-10-14" @default.
- W4312495053 title "Predicting Salaries with Random-Forest Regression" @default.
- W4312495053 cites W2065833407 @default.
- W4312495053 cites W2264709743 @default.
- W4312495053 cites W2487087946 @default.
- W4312495053 cites W2542459869 @default.
- W4312495053 cites W2737706773 @default.
- W4312495053 cites W2769002462 @default.
- W4312495053 cites W2799040448 @default.
- W4312495053 cites W2805391180 @default.
- W4312495053 cites W2888399503 @default.
- W4312495053 cites W2906839688 @default.
- W4312495053 cites W2911964244 @default.
- W4312495053 cites W2911978475 @default.
- W4312495053 cites W3099802519 @default.
- W4312495053 cites W3112787034 @default.
- W4312495053 cites W3127059672 @default.
- W4312495053 cites W4212883601 @default.
- W4312495053 cites W4247640718 @default.
- W4312495053 doi "https://doi.org/10.1007/978-3-031-18483-3_1" @default.
- W4312495053 hasPublicationYear "2022" @default.
- W4312495053 type Work @default.
- W4312495053 citedByCount "0" @default.
- W4312495053 crossrefType "book-chapter" @default.
- W4312495053 hasAuthorship W4312495053A5054484992 @default.
- W4312495053 hasAuthorship W4312495053A5085297480 @default.
- W4312495053 hasConcept C105795698 @default.
- W4312495053 hasConcept C111472728 @default.
- W4312495053 hasConcept C119857082 @default.
- W4312495053 hasConcept C138885662 @default.
- W4312495053 hasConcept C149782125 @default.
- W4312495053 hasConcept C150217764 @default.
- W4312495053 hasConcept C152877465 @default.
- W4312495053 hasConcept C154945302 @default.
- W4312495053 hasConcept C162324750 @default.
- W4312495053 hasConcept C169258074 @default.
- W4312495053 hasConcept C2779530757 @default.
- W4312495053 hasConcept C2780090960 @default.
- W4312495053 hasConcept C33923547 @default.
- W4312495053 hasConcept C34447519 @default.
- W4312495053 hasConcept C41008148 @default.
- W4312495053 hasConcept C48921125 @default.
- W4312495053 hasConcept C50644808 @default.
- W4312495053 hasConcept C5274069 @default.
- W4312495053 hasConcept C79337645 @default.
- W4312495053 hasConcept C83546350 @default.
- W4312495053 hasConceptScore W4312495053C105795698 @default.
- W4312495053 hasConceptScore W4312495053C111472728 @default.
- W4312495053 hasConceptScore W4312495053C119857082 @default.
- W4312495053 hasConceptScore W4312495053C138885662 @default.
- W4312495053 hasConceptScore W4312495053C149782125 @default.
- W4312495053 hasConceptScore W4312495053C150217764 @default.
- W4312495053 hasConceptScore W4312495053C152877465 @default.
- W4312495053 hasConceptScore W4312495053C154945302 @default.
- W4312495053 hasConceptScore W4312495053C162324750 @default.
- W4312495053 hasConceptScore W4312495053C169258074 @default.
- W4312495053 hasConceptScore W4312495053C2779530757 @default.
- W4312495053 hasConceptScore W4312495053C2780090960 @default.
- W4312495053 hasConceptScore W4312495053C33923547 @default.
- W4312495053 hasConceptScore W4312495053C34447519 @default.
- W4312495053 hasConceptScore W4312495053C41008148 @default.
- W4312495053 hasConceptScore W4312495053C48921125 @default.
- W4312495053 hasConceptScore W4312495053C50644808 @default.
- W4312495053 hasConceptScore W4312495053C5274069 @default.
- W4312495053 hasConceptScore W4312495053C79337645 @default.
- W4312495053 hasConceptScore W4312495053C83546350 @default.
- W4312495053 hasLocation W43124950531 @default.
- W4312495053 hasOpenAccess W4312495053 @default.
- W4312495053 hasPrimaryLocation W43124950531 @default.
- W4312495053 hasRelatedWork W2018697919 @default.
- W4312495053 hasRelatedWork W2027529054 @default.
- W4312495053 hasRelatedWork W2081636929 @default.
- W4312495053 hasRelatedWork W2111070070 @default.
- W4312495053 hasRelatedWork W2156530563 @default.
- W4312495053 hasRelatedWork W2325374573 @default.
- W4312495053 hasRelatedWork W3022629739 @default.
- W4312495053 hasRelatedWork W3124017415 @default.
- W4312495053 hasRelatedWork W4249094282 @default.
- W4312495053 hasRelatedWork W4292148089 @default.
- W4312495053 isParatext "false" @default.
- W4312495053 isRetracted "false" @default.
- W4312495053 workType "book-chapter" @default.