Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312495490> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4312495490 abstract "Prediction of Surface Sea Temperature (SST) is of great importance in seasonal forecasts in the region and beyond, mainly due to its significant role in global atmospheric circulation. On the other hand, SST predicting from given multivariate sequences using historical ocean variables is vital to investigate how SST physical phenomena generated. This paper seeks to significantly improve the prediction of Surface Sea Temperature (SST) by combining two machine learning methodologies: short-term memory networks (LSTM) added to Gaussian Process Regression (GPR). We developed a data-driven approach based on deep learning and GPR modeling to improve the prediction of SST levels in the red sea based on meteorological variables, including the hourly wind speed (WS), air temperature at 2m (T2), and relative humidity (RH) variables. The coupled GPR-LSTM model may potentially carry both flexibility and feature extraction capacity, which could describe temporal dependencies in SST time-series and improve the prediction accuracy of SST. It is necessary to indicate that these types of hybrid-based approach architectures have not used before in SST time-series prediction, so it is a new approach to deal with these types of problems. The results demonstrate a significant improvement when this hybrid model is compared to LSTM and the most frequently used ensemble learning models." @default.
- W4312495490 created "2023-01-05" @default.
- W4312495490 creator A5055782064 @default.
- W4312495490 creator A5061770406 @default.
- W4312495490 creator A5064439431 @default.
- W4312495490 creator A5070285093 @default.
- W4312495490 creator A5089073067 @default.
- W4312495490 date "2022-07-25" @default.
- W4312495490 modified "2023-10-17" @default.
- W4312495490 title "Efficient SST prediction in the Red Sea using hybrid deep learning-based approach" @default.
- W4312495490 cites W1556721367 @default.
- W4312495490 cites W1605688901 @default.
- W4312495490 cites W179875071 @default.
- W4312495490 cites W1964357740 @default.
- W4312495490 cites W1978648105 @default.
- W4312495490 cites W1978748543 @default.
- W4312495490 cites W2036856405 @default.
- W4312495490 cites W2064675550 @default.
- W4312495490 cites W2143284481 @default.
- W4312495490 cites W2283436666 @default.
- W4312495490 cites W2285755321 @default.
- W4312495490 cites W2294120432 @default.
- W4312495490 cites W2303654018 @default.
- W4312495490 cites W2584200484 @default.
- W4312495490 cites W2751802138 @default.
- W4312495490 cites W2769160396 @default.
- W4312495490 cites W2800885793 @default.
- W4312495490 cites W2884143671 @default.
- W4312495490 cites W2915250048 @default.
- W4312495490 cites W2921938384 @default.
- W4312495490 cites W2964858211 @default.
- W4312495490 cites W3025949386 @default.
- W4312495490 cites W3048413522 @default.
- W4312495490 cites W3089480847 @default.
- W4312495490 cites W3092121653 @default.
- W4312495490 cites W3105832313 @default.
- W4312495490 doi "https://doi.org/10.1109/indin51773.2022.9976090" @default.
- W4312495490 hasPublicationYear "2022" @default.
- W4312495490 type Work @default.
- W4312495490 citedByCount "2" @default.
- W4312495490 countsByYear W43124954902023 @default.
- W4312495490 crossrefType "proceedings-article" @default.
- W4312495490 hasAuthorship W4312495490A5055782064 @default.
- W4312495490 hasAuthorship W4312495490A5061770406 @default.
- W4312495490 hasAuthorship W4312495490A5064439431 @default.
- W4312495490 hasAuthorship W4312495490A5070285093 @default.
- W4312495490 hasAuthorship W4312495490A5089073067 @default.
- W4312495490 hasBestOaLocation W43124954902 @default.
- W4312495490 hasConcept C119857082 @default.
- W4312495490 hasConcept C121332964 @default.
- W4312495490 hasConcept C127313418 @default.
- W4312495490 hasConcept C134097258 @default.
- W4312495490 hasConcept C151406439 @default.
- W4312495490 hasConcept C153294291 @default.
- W4312495490 hasConcept C154945302 @default.
- W4312495490 hasConcept C161067210 @default.
- W4312495490 hasConcept C163716315 @default.
- W4312495490 hasConcept C41008148 @default.
- W4312495490 hasConcept C49204034 @default.
- W4312495490 hasConcept C61326573 @default.
- W4312495490 hasConcept C62520636 @default.
- W4312495490 hasConceptScore W4312495490C119857082 @default.
- W4312495490 hasConceptScore W4312495490C121332964 @default.
- W4312495490 hasConceptScore W4312495490C127313418 @default.
- W4312495490 hasConceptScore W4312495490C134097258 @default.
- W4312495490 hasConceptScore W4312495490C151406439 @default.
- W4312495490 hasConceptScore W4312495490C153294291 @default.
- W4312495490 hasConceptScore W4312495490C154945302 @default.
- W4312495490 hasConceptScore W4312495490C161067210 @default.
- W4312495490 hasConceptScore W4312495490C163716315 @default.
- W4312495490 hasConceptScore W4312495490C41008148 @default.
- W4312495490 hasConceptScore W4312495490C49204034 @default.
- W4312495490 hasConceptScore W4312495490C61326573 @default.
- W4312495490 hasConceptScore W4312495490C62520636 @default.
- W4312495490 hasFunder F4320322320 @default.
- W4312495490 hasLocation W43124954901 @default.
- W4312495490 hasLocation W43124954902 @default.
- W4312495490 hasOpenAccess W4312495490 @default.
- W4312495490 hasPrimaryLocation W43124954901 @default.
- W4312495490 hasRelatedWork W2018624935 @default.
- W4312495490 hasRelatedWork W2360121228 @default.
- W4312495490 hasRelatedWork W2376478611 @default.
- W4312495490 hasRelatedWork W2391601747 @default.
- W4312495490 hasRelatedWork W2783038087 @default.
- W4312495490 hasRelatedWork W2795468861 @default.
- W4312495490 hasRelatedWork W2988561062 @default.
- W4312495490 hasRelatedWork W4213225422 @default.
- W4312495490 hasRelatedWork W4280594323 @default.
- W4312495490 hasRelatedWork W4309045103 @default.
- W4312495490 isParatext "false" @default.
- W4312495490 isRetracted "false" @default.
- W4312495490 workType "article" @default.