Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312552203> ?p ?o ?g. }
- W4312552203 endingPage "18" @default.
- W4312552203 startingPage "1" @default.
- W4312552203 abstract "The work investigates the use of two types of glottal flow derivative-based image variants of the input signal with an n-dilated (nD)-inception-layers-based deep learning model for providing optimal labels. The authors have proposed an n-dilated (nD) inception layer-based adversarial pathological response (APR) net deep learning model. This model is trained using the two image databases separately in an adversarial manner so that when a test image is common to test image is applied to both the networks. The results show a mean accuracy of 96.82%, 96.36%, and 99.35% for the Glottal inverse filtering with extended Kalman Filter-Morse scalogram (GIFEKF-MS) APRNet, Glottal inverse filtering with extended Kalman Filter-spectrogram (GIFEKF-S) APRNet, and proposed APR fusion net respectively using the VOice ICar fEDerico II (VOICED) dataset; and mean accuracies 95.67%, 93.27%, and 99.04% for the GIFEKF-MS APRNet, GIFEKF-S APRNet, and proposed APR fusion net respectively using the Saarbrucken voice database (SVD)dataset." @default.
- W4312552203 created "2023-01-05" @default.
- W4312552203 creator A5014524737 @default.
- W4312552203 creator A5044240021 @default.
- W4312552203 date "2022-10-25" @default.
- W4312552203 modified "2023-09-27" @default.
- W4312552203 title "An Intelligent System for the Diagnosis of Voice Pathology Based on Adversarial Pathological Response (APR) Net Deep Learning Model" @default.
- W4312552203 cites W1970278793 @default.
- W4312552203 cites W1992404540 @default.
- W4312552203 cites W2002080627 @default.
- W4312552203 cites W2012296273 @default.
- W4312552203 cites W2016849198 @default.
- W4312552203 cites W2020248475 @default.
- W4312552203 cites W2021320575 @default.
- W4312552203 cites W2032839045 @default.
- W4312552203 cites W2033068515 @default.
- W4312552203 cites W2039871788 @default.
- W4312552203 cites W2042390666 @default.
- W4312552203 cites W2047389778 @default.
- W4312552203 cites W2054159638 @default.
- W4312552203 cites W2055775654 @default.
- W4312552203 cites W2059003220 @default.
- W4312552203 cites W2068367700 @default.
- W4312552203 cites W2095176743 @default.
- W4312552203 cites W2097117768 @default.
- W4312552203 cites W2117539524 @default.
- W4312552203 cites W2138041026 @default.
- W4312552203 cites W2145404233 @default.
- W4312552203 cites W2148244507 @default.
- W4312552203 cites W2157558008 @default.
- W4312552203 cites W2163443023 @default.
- W4312552203 cites W2326048441 @default.
- W4312552203 cites W2339666751 @default.
- W4312552203 cites W2396415881 @default.
- W4312552203 cites W2412782625 @default.
- W4312552203 cites W2506429203 @default.
- W4312552203 cites W2529928855 @default.
- W4312552203 cites W2538918575 @default.
- W4312552203 cites W2583637943 @default.
- W4312552203 cites W2607377556 @default.
- W4312552203 cites W2734479159 @default.
- W4312552203 cites W2754582354 @default.
- W4312552203 cites W2755288226 @default.
- W4312552203 cites W2766329439 @default.
- W4312552203 cites W2768083292 @default.
- W4312552203 cites W2798376494 @default.
- W4312552203 cites W2806307414 @default.
- W4312552203 cites W2896927224 @default.
- W4312552203 cites W2964209782 @default.
- W4312552203 cites W3168831338 @default.
- W4312552203 cites W4230028125 @default.
- W4312552203 doi "https://doi.org/10.4018/ijsi.312261" @default.
- W4312552203 hasPublicationYear "2022" @default.
- W4312552203 type Work @default.
- W4312552203 citedByCount "0" @default.
- W4312552203 crossrefType "journal-article" @default.
- W4312552203 hasAuthorship W4312552203A5014524737 @default.
- W4312552203 hasAuthorship W4312552203A5044240021 @default.
- W4312552203 hasConcept C106131492 @default.
- W4312552203 hasConcept C108583219 @default.
- W4312552203 hasConcept C115961682 @default.
- W4312552203 hasConcept C138885662 @default.
- W4312552203 hasConcept C153180895 @default.
- W4312552203 hasConcept C154945302 @default.
- W4312552203 hasConcept C207390915 @default.
- W4312552203 hasConcept C207467116 @default.
- W4312552203 hasConcept C2524010 @default.
- W4312552203 hasConcept C2779948431 @default.
- W4312552203 hasConcept C28490314 @default.
- W4312552203 hasConcept C31972630 @default.
- W4312552203 hasConcept C33923547 @default.
- W4312552203 hasConcept C41008148 @default.
- W4312552203 hasConcept C41895202 @default.
- W4312552203 hasConcept C45273575 @default.
- W4312552203 hasConcept C50644808 @default.
- W4312552203 hasConcept C69744172 @default.
- W4312552203 hasConceptScore W4312552203C106131492 @default.
- W4312552203 hasConceptScore W4312552203C108583219 @default.
- W4312552203 hasConceptScore W4312552203C115961682 @default.
- W4312552203 hasConceptScore W4312552203C138885662 @default.
- W4312552203 hasConceptScore W4312552203C153180895 @default.
- W4312552203 hasConceptScore W4312552203C154945302 @default.
- W4312552203 hasConceptScore W4312552203C207390915 @default.
- W4312552203 hasConceptScore W4312552203C207467116 @default.
- W4312552203 hasConceptScore W4312552203C2524010 @default.
- W4312552203 hasConceptScore W4312552203C2779948431 @default.
- W4312552203 hasConceptScore W4312552203C28490314 @default.
- W4312552203 hasConceptScore W4312552203C31972630 @default.
- W4312552203 hasConceptScore W4312552203C33923547 @default.
- W4312552203 hasConceptScore W4312552203C41008148 @default.
- W4312552203 hasConceptScore W4312552203C41895202 @default.
- W4312552203 hasConceptScore W4312552203C45273575 @default.
- W4312552203 hasConceptScore W4312552203C50644808 @default.
- W4312552203 hasConceptScore W4312552203C69744172 @default.
- W4312552203 hasIssue "1" @default.
- W4312552203 hasLocation W43125522031 @default.
- W4312552203 hasOpenAccess W4312552203 @default.
- W4312552203 hasPrimaryLocation W43125522031 @default.