Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312559675> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4312559675 endingPage "535" @default.
- W4312559675 startingPage "525" @default.
- W4312559675 abstract "AbstractThe research of fall detection is a hot topic in computer vision. Most existing methods only detect the fall in simple scenes of a single person. Moreover, these methods only extract fall action features from RGB images, and neglect to extract features from human joint coordinates, resulting in a decrease in recognition accuracy. In order to extract discriminative action features, a fall detection method based on action structured method and cascade dilated graph convolution neural network is proposed. The action structured method (ASM) is proposed to model the skeleton of human action through the pose estimation algorithm, which removes the interference of complex background. Besides, the object detection algorithm is utilized to locate multiple people to transfers the fall detection issue of multi-person to single person fall detection. The proposed cascaded dilated graph convolution network (CD-GCN) enlarges the receptive field by the dilated operation, effectively extracts action features from joint node coordinates, and fuses multichannel features with different dilation rates, then finally obtains the classification results. The proposed method achieves the best accuracy on three public datasets and one self-collected dataset, which is out-performing other state-of-art fall detection methods.KeywordsFall detectionAction structured methodPose estimationMultichannelCascaded dilated graph convolution network" @default.
- W4312559675 created "2023-01-05" @default.
- W4312559675 creator A5010086656 @default.
- W4312559675 creator A5046995251 @default.
- W4312559675 creator A5057055806 @default.
- W4312559675 creator A5067229730 @default.
- W4312559675 creator A5084827882 @default.
- W4312559675 date "2022-01-01" @default.
- W4312559675 modified "2023-09-27" @default.
- W4312559675 title "Fall Detection Based on Action Structured Method and Cascaded Dilated Graph Convolution Network" @default.
- W4312559675 cites W1515590331 @default.
- W4312559675 cites W2028661866 @default.
- W4312559675 cites W2074099390 @default.
- W4312559675 cites W2076068958 @default.
- W4312559675 cites W2101161342 @default.
- W4312559675 cites W2150216628 @default.
- W4312559675 cites W2279364907 @default.
- W4312559675 cites W2414900880 @default.
- W4312559675 cites W2606909710 @default.
- W4312559675 cites W2609389856 @default.
- W4312559675 cites W2767570387 @default.
- W4312559675 cites W2777292639 @default.
- W4312559675 cites W2801475069 @default.
- W4312559675 cites W2807719585 @default.
- W4312559675 cites W2909645133 @default.
- W4312559675 cites W2962730651 @default.
- W4312559675 cites W2963781481 @default.
- W4312559675 cites W3006990902 @default.
- W4312559675 cites W3017512296 @default.
- W4312559675 cites W3026359008 @default.
- W4312559675 cites W3034455037 @default.
- W4312559675 cites W3045991541 @default.
- W4312559675 cites W3120599689 @default.
- W4312559675 cites W3126145531 @default.
- W4312559675 cites W3128280133 @default.
- W4312559675 cites W3162477622 @default.
- W4312559675 cites W3163791335 @default.
- W4312559675 cites W3209195060 @default.
- W4312559675 cites W863133599 @default.
- W4312559675 doi "https://doi.org/10.1007/978-3-031-18123-8_41" @default.
- W4312559675 hasPublicationYear "2022" @default.
- W4312559675 type Work @default.
- W4312559675 citedByCount "0" @default.
- W4312559675 crossrefType "book-chapter" @default.
- W4312559675 hasAuthorship W4312559675A5010086656 @default.
- W4312559675 hasAuthorship W4312559675A5046995251 @default.
- W4312559675 hasAuthorship W4312559675A5057055806 @default.
- W4312559675 hasAuthorship W4312559675A5067229730 @default.
- W4312559675 hasAuthorship W4312559675A5084827882 @default.
- W4312559675 hasConcept C132525143 @default.
- W4312559675 hasConcept C153180895 @default.
- W4312559675 hasConcept C154945302 @default.
- W4312559675 hasConcept C2776151529 @default.
- W4312559675 hasConcept C2777212361 @default.
- W4312559675 hasConcept C2987834672 @default.
- W4312559675 hasConcept C31972630 @default.
- W4312559675 hasConcept C41008148 @default.
- W4312559675 hasConcept C45347329 @default.
- W4312559675 hasConcept C50644808 @default.
- W4312559675 hasConcept C80444323 @default.
- W4312559675 hasConcept C82990744 @default.
- W4312559675 hasConcept C97931131 @default.
- W4312559675 hasConceptScore W4312559675C132525143 @default.
- W4312559675 hasConceptScore W4312559675C153180895 @default.
- W4312559675 hasConceptScore W4312559675C154945302 @default.
- W4312559675 hasConceptScore W4312559675C2776151529 @default.
- W4312559675 hasConceptScore W4312559675C2777212361 @default.
- W4312559675 hasConceptScore W4312559675C2987834672 @default.
- W4312559675 hasConceptScore W4312559675C31972630 @default.
- W4312559675 hasConceptScore W4312559675C41008148 @default.
- W4312559675 hasConceptScore W4312559675C45347329 @default.
- W4312559675 hasConceptScore W4312559675C50644808 @default.
- W4312559675 hasConceptScore W4312559675C80444323 @default.
- W4312559675 hasConceptScore W4312559675C82990744 @default.
- W4312559675 hasConceptScore W4312559675C97931131 @default.
- W4312559675 hasLocation W43125596751 @default.
- W4312559675 hasOpenAccess W4312559675 @default.
- W4312559675 hasPrimaryLocation W43125596751 @default.
- W4312559675 hasRelatedWork W2008001747 @default.
- W4312559675 hasRelatedWork W2026121273 @default.
- W4312559675 hasRelatedWork W2077975751 @default.
- W4312559675 hasRelatedWork W2111662190 @default.
- W4312559675 hasRelatedWork W2133813344 @default.
- W4312559675 hasRelatedWork W2559565131 @default.
- W4312559675 hasRelatedWork W2997394683 @default.
- W4312559675 hasRelatedWork W4226383822 @default.
- W4312559675 hasRelatedWork W4283317460 @default.
- W4312559675 hasRelatedWork W4285816454 @default.
- W4312559675 isParatext "false" @default.
- W4312559675 isRetracted "false" @default.
- W4312559675 workType "book-chapter" @default.