Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312563794> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4312563794 endingPage "16" @default.
- W4312563794 startingPage "1" @default.
- W4312563794 abstract "We consider the optimal routing problem in a discrete-time system with a job dispatcher connected to <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$M$</tex-math> </inline-formula> parallel servers. At every time slot, the job dispatcher sends the incoming jobs to a server for execution, with each server having a queue that stores the jobs. The arrival process of incoming jobs, and the service processes of the servers are stochastic with unknown and possibly heterogeneous rates. Each server <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$s_m$</tex-math> </inline-formula> is associated with an underlying utility <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$v_m$</tex-math> </inline-formula> that is initially unknown. Whenever server <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$s_m$</tex-math> </inline-formula> completes a job, a utility of <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$v_m$</tex-math> </inline-formula> is obtained and a noisy observation of <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$v_m$</tex-math> </inline-formula> is received. The goal is to design a policy that makes routing decisions to maximize the total utility obtained by the end of a finite time horizon <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$T$</tex-math> </inline-formula> . The performance of policies is measured in terms of regret, which is the additive difference between the expected total utility obtained by the policy and the supremum of the expected total utility over all the policies. The optimal routing problem can be interpreted as a problem of multi-armed bandit with queues where each server is viewed as an arm and the completion of a job is viewed as a pull of an arm. The key distinction between the optimal routing problem and traditional multi-armed bandit problems is in the queueing dynamics at the server, which arises due to the stochastic nature of the arrival and service processes. Our results combine techniques from control of stochastic queueing systems and stochastic multi-armed bandits to provide insights to the design and analysis of policies for the optimal routing problem. We first present analytical bounds that link the regret to the utilization and queue length of servers. Next, we start by assuming that the ordering of the underlying utilities is known and introduce the Priority- <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$K$</tex-math> </inline-formula> routing policy which makes priority-based routing decisions that send the incoming jobs to the server of the highest underlying utility with queue length no larger than a threshold <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$K$</tex-math> </inline-formula> . We prove that Priority-TEXPRESERVE9 achieves <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$O(log T)$</tex-math> </inline-formula> -regret with an appropriately chosen <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$K$</tex-math> </inline-formula> . Next, removing the assumption of known utility ordering, we propose the <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Upper-Confidence Priority-<inline-formula> <tex-math notation=LaTeX>$K$</tex-math> </inline-formula> </i> policy, which essentially combines the Priority- <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$K$</tex-math> </inline-formula> policy with the ordering based on the upper-confidence bounds of the underlying utilities, and establish that the Upper-Confidence Priority- <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$K$</tex-math> </inline-formula> policy achieves an instance-dependent <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$O(log^3 T)$</tex-math> </inline-formula> -regret. Finally, we extend our results to the a generalized version of the optimal routing problem with multiple job dispatchers in a bipartite network. Our theoretical results are also validated by simulations." @default.
- W4312563794 created "2023-01-05" @default.
- W4312563794 creator A5036587377 @default.
- W4312563794 creator A5049286032 @default.
- W4312563794 date "2022-01-01" @default.
- W4312563794 modified "2023-09-27" @default.
- W4312563794 title "Optimal Routing to Parallel Servers With Unknown Utilities—Multi-Armed Bandit With Queues" @default.
- W4312563794 doi "https://doi.org/10.1109/tnet.2022.3227136" @default.
- W4312563794 hasPublicationYear "2022" @default.
- W4312563794 type Work @default.
- W4312563794 citedByCount "0" @default.
- W4312563794 crossrefType "journal-article" @default.
- W4312563794 hasAuthorship W4312563794A5036587377 @default.
- W4312563794 hasAuthorship W4312563794A5049286032 @default.
- W4312563794 hasConcept C11413529 @default.
- W4312563794 hasConcept C118615104 @default.
- W4312563794 hasConcept C136764020 @default.
- W4312563794 hasConcept C160403385 @default.
- W4312563794 hasConcept C199360897 @default.
- W4312563794 hasConcept C33923547 @default.
- W4312563794 hasConcept C41008148 @default.
- W4312563794 hasConcept C45357846 @default.
- W4312563794 hasConcept C93996380 @default.
- W4312563794 hasConcept C94375191 @default.
- W4312563794 hasConceptScore W4312563794C11413529 @default.
- W4312563794 hasConceptScore W4312563794C118615104 @default.
- W4312563794 hasConceptScore W4312563794C136764020 @default.
- W4312563794 hasConceptScore W4312563794C160403385 @default.
- W4312563794 hasConceptScore W4312563794C199360897 @default.
- W4312563794 hasConceptScore W4312563794C33923547 @default.
- W4312563794 hasConceptScore W4312563794C41008148 @default.
- W4312563794 hasConceptScore W4312563794C45357846 @default.
- W4312563794 hasConceptScore W4312563794C93996380 @default.
- W4312563794 hasConceptScore W4312563794C94375191 @default.
- W4312563794 hasFunder F4320337345 @default.
- W4312563794 hasLocation W43125637941 @default.
- W4312563794 hasOpenAccess W4312563794 @default.
- W4312563794 hasPrimaryLocation W43125637941 @default.
- W4312563794 hasRelatedWork W1561758084 @default.
- W4312563794 hasRelatedWork W1583717361 @default.
- W4312563794 hasRelatedWork W1701020922 @default.
- W4312563794 hasRelatedWork W1751890932 @default.
- W4312563794 hasRelatedWork W2048178602 @default.
- W4312563794 hasRelatedWork W2118449739 @default.
- W4312563794 hasRelatedWork W2350199049 @default.
- W4312563794 hasRelatedWork W2358049517 @default.
- W4312563794 hasRelatedWork W2371023786 @default.
- W4312563794 hasRelatedWork W2392906661 @default.
- W4312563794 isParatext "false" @default.
- W4312563794 isRetracted "false" @default.
- W4312563794 workType "article" @default.