Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312565542> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4312565542 endingPage "96" @default.
- W4312565542 startingPage "91" @default.
- W4312565542 abstract "Automated visual inspection for quality control has widely-used deep convolutional neural networks (CNNs) in fabric defect detection. Most of the research on defect detection only focuses on increasing the accuracy of segmentation models with little attention to computationally efficient solutions. In this study, we propose a highly efficient deep learning-based method for pixel-level fabric defect classification algorithm based on a CNN. We started with the ShuffleNet V2 feature extractor, added five deconvolution layers as the decoder, and used a resize bilinear to produce the segmentation mask. To solve the sample imbalance problem, we used an improved loss function to guide network learning. We evaluated our model on the fabric defect data set. The proposed model outperformed the existing image segmentation models in both model efficiency and segmentation accuracy." @default.
- W4312565542 created "2023-01-05" @default.
- W4312565542 creator A5039659323 @default.
- W4312565542 creator A5065058975 @default.
- W4312565542 creator A5066776596 @default.
- W4312565542 creator A5067368375 @default.
- W4312565542 date "2021-09-01" @default.
- W4312565542 modified "2023-10-16" @default.
- W4312565542 title "Real-Time Fabric Defect Segmentation Based on Convolutional Neural Network" @default.
- W4312565542 cites W2034851609 @default.
- W4312565542 cites W2344661575 @default.
- W4312565542 cites W2395611524 @default.
- W4312565542 cites W2758014637 @default.
- W4312565542 cites W2795647708 @default.
- W4312565542 cites W2889098100 @default.
- W4312565542 cites W2897034954 @default.
- W4312565542 cites W2899983521 @default.
- W4312565542 cites W2900936384 @default.
- W4312565542 cites W2905534296 @default.
- W4312565542 cites W2911015373 @default.
- W4312565542 cites W2911595607 @default.
- W4312565542 cites W2921163360 @default.
- W4312565542 cites W2922209482 @default.
- W4312565542 cites W2937534293 @default.
- W4312565542 cites W2940215225 @default.
- W4312565542 cites W2963156262 @default.
- W4312565542 cites W2963881378 @default.
- W4312565542 cites W2971018391 @default.
- W4312565542 cites W2994817145 @default.
- W4312565542 cites W3082346021 @default.
- W4312565542 doi "https://doi.org/10.14504/ajr.8.s1.12" @default.
- W4312565542 hasPublicationYear "2021" @default.
- W4312565542 type Work @default.
- W4312565542 citedByCount "1" @default.
- W4312565542 countsByYear W43125655422022 @default.
- W4312565542 crossrefType "journal-article" @default.
- W4312565542 hasAuthorship W4312565542A5039659323 @default.
- W4312565542 hasAuthorship W4312565542A5065058975 @default.
- W4312565542 hasAuthorship W4312565542A5066776596 @default.
- W4312565542 hasAuthorship W4312565542A5067368375 @default.
- W4312565542 hasConcept C108583219 @default.
- W4312565542 hasConcept C11413529 @default.
- W4312565542 hasConcept C124504099 @default.
- W4312565542 hasConcept C138885662 @default.
- W4312565542 hasConcept C153180895 @default.
- W4312565542 hasConcept C154945302 @default.
- W4312565542 hasConcept C160633673 @default.
- W4312565542 hasConcept C174576160 @default.
- W4312565542 hasConcept C177264268 @default.
- W4312565542 hasConcept C199360897 @default.
- W4312565542 hasConcept C205203396 @default.
- W4312565542 hasConcept C2776401178 @default.
- W4312565542 hasConcept C31972630 @default.
- W4312565542 hasConcept C41008148 @default.
- W4312565542 hasConcept C41895202 @default.
- W4312565542 hasConcept C50644808 @default.
- W4312565542 hasConcept C58489278 @default.
- W4312565542 hasConcept C81363708 @default.
- W4312565542 hasConcept C89600930 @default.
- W4312565542 hasConceptScore W4312565542C108583219 @default.
- W4312565542 hasConceptScore W4312565542C11413529 @default.
- W4312565542 hasConceptScore W4312565542C124504099 @default.
- W4312565542 hasConceptScore W4312565542C138885662 @default.
- W4312565542 hasConceptScore W4312565542C153180895 @default.
- W4312565542 hasConceptScore W4312565542C154945302 @default.
- W4312565542 hasConceptScore W4312565542C160633673 @default.
- W4312565542 hasConceptScore W4312565542C174576160 @default.
- W4312565542 hasConceptScore W4312565542C177264268 @default.
- W4312565542 hasConceptScore W4312565542C199360897 @default.
- W4312565542 hasConceptScore W4312565542C205203396 @default.
- W4312565542 hasConceptScore W4312565542C2776401178 @default.
- W4312565542 hasConceptScore W4312565542C31972630 @default.
- W4312565542 hasConceptScore W4312565542C41008148 @default.
- W4312565542 hasConceptScore W4312565542C41895202 @default.
- W4312565542 hasConceptScore W4312565542C50644808 @default.
- W4312565542 hasConceptScore W4312565542C58489278 @default.
- W4312565542 hasConceptScore W4312565542C81363708 @default.
- W4312565542 hasConceptScore W4312565542C89600930 @default.
- W4312565542 hasIssue "1_suppl" @default.
- W4312565542 hasLocation W43125655421 @default.
- W4312565542 hasOpenAccess W4312565542 @default.
- W4312565542 hasPrimaryLocation W43125655421 @default.
- W4312565542 hasRelatedWork W1669643531 @default.
- W4312565542 hasRelatedWork W2090093270 @default.
- W4312565542 hasRelatedWork W2739874619 @default.
- W4312565542 hasRelatedWork W2979303128 @default.
- W4312565542 hasRelatedWork W3102253946 @default.
- W4312565542 hasRelatedWork W3144574764 @default.
- W4312565542 hasRelatedWork W3156786002 @default.
- W4312565542 hasRelatedWork W4226289457 @default.
- W4312565542 hasRelatedWork W4293211451 @default.
- W4312565542 hasRelatedWork W4308191152 @default.
- W4312565542 hasVolume "8" @default.
- W4312565542 isParatext "false" @default.
- W4312565542 isRetracted "false" @default.
- W4312565542 workType "article" @default.