Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312574166> ?p ?o ?g. }
- W4312574166 endingPage "726" @default.
- W4312574166 startingPage "714" @default.
- W4312574166 abstract "Cardiac disease is the major cause of deaths all over the world, with 17.9 million deaths annually, as per World Health Organization reports. The purpose of this study is to enable a cardiologist to early predict the patient’s condition before performing the echocardiography test. This study aims to find out whether diastolic function or diastolic dysfunction using symptoms through machine learning. We used the unexplored dataset of diastolic dysfunction disease in this study and checked the symptoms with cardiologist to be enough to predict the disease. For this study, the records of 1285 patients were used, out of which 524 patients had diastolic function and the other 761 patients had diastolic dysfunction. The input parameters considered in this detection include patient age, gender, BP systolic, BP diastolic, BSA, BMI, hypertension, obesity, and Shortness of Breath (SOB). Various machine learning algorithms were used for this detection including Random Forest, J.48, Logistic Regression, and Support Vector Machine algorithms. As a result, with an accuracy of 85.45%, Logistic Regression provided promising results and proved efficient for early prediction of cardiac disease. Other algorithms had an accuracy as follow, J.48 (85.21%), Random Forest (84.94%), and SVM (84.94%). Using a machine learning tool and a patient’s dataset of diastolic dysfunction, we can declare either a patient has cardiac disease or not." @default.
- W4312574166 created "2023-01-05" @default.
- W4312574166 creator A5009247537 @default.
- W4312574166 creator A5023485707 @default.
- W4312574166 creator A5029421129 @default.
- W4312574166 date "2022-06-30" @default.
- W4312574166 modified "2023-09-30" @default.
- W4312574166 title "Diastolic Dysfunction Prediction with Symptoms Using Machine Learning Approach" @default.
- W4312574166 cites W1850308234 @default.
- W4312574166 cites W2019565791 @default.
- W4312574166 cites W2053785999 @default.
- W4312574166 cites W2055728789 @default.
- W4312574166 cites W2062285448 @default.
- W4312574166 cites W2068677783 @default.
- W4312574166 cites W2071922030 @default.
- W4312574166 cites W2096560123 @default.
- W4312574166 cites W2128710157 @default.
- W4312574166 cites W2168417210 @default.
- W4312574166 cites W2248561072 @default.
- W4312574166 cites W2334483344 @default.
- W4312574166 cites W2341390137 @default.
- W4312574166 cites W2411631905 @default.
- W4312574166 cites W2566407663 @default.
- W4312574166 cites W2890635761 @default.
- W4312574166 cites W2901336407 @default.
- W4312574166 cites W2949567553 @default.
- W4312574166 cites W2982980439 @default.
- W4312574166 cites W3010675254 @default.
- W4312574166 cites W3012687466 @default.
- W4312574166 cites W3023591976 @default.
- W4312574166 cites W3026428279 @default.
- W4312574166 cites W3035142875 @default.
- W4312574166 cites W3037322243 @default.
- W4312574166 cites W3044482460 @default.
- W4312574166 cites W3050080398 @default.
- W4312574166 cites W3085959080 @default.
- W4312574166 cites W3092745004 @default.
- W4312574166 cites W3107353531 @default.
- W4312574166 cites W3111847103 @default.
- W4312574166 cites W3128675788 @default.
- W4312574166 cites W3134840015 @default.
- W4312574166 cites W3161970773 @default.
- W4312574166 cites W3163367444 @default.
- W4312574166 cites W3177781640 @default.
- W4312574166 cites W3185516026 @default.
- W4312574166 cites W3188955387 @default.
- W4312574166 cites W3215540076 @default.
- W4312574166 cites W4200180299 @default.
- W4312574166 cites W4200207993 @default.
- W4312574166 cites W4210994988 @default.
- W4312574166 cites W4212826162 @default.
- W4312574166 cites W4212838393 @default.
- W4312574166 cites W4312676221 @default.
- W4312574166 cites W2046747695 @default.
- W4312574166 doi "https://doi.org/10.33411/ijist/2022040312" @default.
- W4312574166 hasPublicationYear "2022" @default.
- W4312574166 type Work @default.
- W4312574166 citedByCount "2" @default.
- W4312574166 countsByYear W43125741662022 @default.
- W4312574166 crossrefType "journal-article" @default.
- W4312574166 hasAuthorship W4312574166A5009247537 @default.
- W4312574166 hasAuthorship W4312574166A5023485707 @default.
- W4312574166 hasAuthorship W4312574166A5029421129 @default.
- W4312574166 hasBestOaLocation W43125741661 @default.
- W4312574166 hasConcept C119857082 @default.
- W4312574166 hasConcept C12267149 @default.
- W4312574166 hasConcept C126322002 @default.
- W4312574166 hasConcept C151956035 @default.
- W4312574166 hasConcept C154945302 @default.
- W4312574166 hasConcept C164705383 @default.
- W4312574166 hasConcept C169258074 @default.
- W4312574166 hasConcept C2779134260 @default.
- W4312574166 hasConcept C41008148 @default.
- W4312574166 hasConcept C57900726 @default.
- W4312574166 hasConcept C71924100 @default.
- W4312574166 hasConcept C84393581 @default.
- W4312574166 hasConceptScore W4312574166C119857082 @default.
- W4312574166 hasConceptScore W4312574166C12267149 @default.
- W4312574166 hasConceptScore W4312574166C126322002 @default.
- W4312574166 hasConceptScore W4312574166C151956035 @default.
- W4312574166 hasConceptScore W4312574166C154945302 @default.
- W4312574166 hasConceptScore W4312574166C164705383 @default.
- W4312574166 hasConceptScore W4312574166C169258074 @default.
- W4312574166 hasConceptScore W4312574166C2779134260 @default.
- W4312574166 hasConceptScore W4312574166C41008148 @default.
- W4312574166 hasConceptScore W4312574166C57900726 @default.
- W4312574166 hasConceptScore W4312574166C71924100 @default.
- W4312574166 hasConceptScore W4312574166C84393581 @default.
- W4312574166 hasIssue "3" @default.
- W4312574166 hasLocation W43125741661 @default.
- W4312574166 hasOpenAccess W4312574166 @default.
- W4312574166 hasPrimaryLocation W43125741661 @default.
- W4312574166 hasRelatedWork W2985924212 @default.
- W4312574166 hasRelatedWork W3138469915 @default.
- W4312574166 hasRelatedWork W3195168932 @default.
- W4312574166 hasRelatedWork W4285312668 @default.
- W4312574166 hasRelatedWork W4321636153 @default.
- W4312574166 hasRelatedWork W4367335893 @default.