Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312581671> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4312581671 abstract "In this paper, we propose a deep learning model for 3D single-photon Lidar imaging through obscurants, i.e., in the presence of a high and non-uniform background. The proposed method unrolls the iterative steps of a Bayesian based-algorithm into the layers of a deep neural network. To deal with imaging through obscurants, the method first unmix signal and background photons in a pre-processing step. Following this, the method builds on multiscale information to improve robustness to noise and uses the attention framework for scale selection within the network. Experimental results on simulated and real underwater data demonstrate that our method can estimate accurate depth maps in challenging situations with a high non-uniform background. Compared to state-of-the-art deep learning methods, the proposed method enables an estimation of parameters uncertainties, suitable for decision making." @default.
- W4312581671 created "2023-01-05" @default.
- W4312581671 creator A5010538525 @default.
- W4312581671 creator A5047917337 @default.
- W4312581671 creator A5064381812 @default.
- W4312581671 creator A5072310450 @default.
- W4312581671 creator A5080680426 @default.
- W4312581671 date "2022-08-29" @default.
- W4312581671 modified "2023-09-24" @default.
- W4312581671 title "A Bayesian Based Unrolling Approach to Single-Photon Lidar Imaging through Obscurants" @default.
- W4312581671 cites W1513100184 @default.
- W4312581671 cites W1852016712 @default.
- W4312581671 cites W2133255058 @default.
- W4312581671 cites W2805297939 @default.
- W4312581671 cites W2809731038 @default.
- W4312581671 cites W2913110478 @default.
- W4312581671 cites W2963497304 @default.
- W4312581671 cites W2966802213 @default.
- W4312581671 cites W2973821584 @default.
- W4312581671 cites W3018295689 @default.
- W4312581671 cites W3038685279 @default.
- W4312581671 cites W3048590988 @default.
- W4312581671 cites W3100158650 @default.
- W4312581671 cites W3102929960 @default.
- W4312581671 cites W3128112652 @default.
- W4312581671 cites W3163982590 @default.
- W4312581671 cites W3184277843 @default.
- W4312581671 cites W4226424744 @default.
- W4312581671 doi "https://doi.org/10.23919/eusipco55093.2022.9909749" @default.
- W4312581671 hasPublicationYear "2022" @default.
- W4312581671 type Work @default.
- W4312581671 citedByCount "0" @default.
- W4312581671 crossrefType "proceedings-article" @default.
- W4312581671 hasAuthorship W4312581671A5010538525 @default.
- W4312581671 hasAuthorship W4312581671A5047917337 @default.
- W4312581671 hasAuthorship W4312581671A5064381812 @default.
- W4312581671 hasAuthorship W4312581671A5072310450 @default.
- W4312581671 hasAuthorship W4312581671A5080680426 @default.
- W4312581671 hasConcept C104317684 @default.
- W4312581671 hasConcept C107673813 @default.
- W4312581671 hasConcept C108583219 @default.
- W4312581671 hasConcept C119857082 @default.
- W4312581671 hasConcept C127313418 @default.
- W4312581671 hasConcept C153180895 @default.
- W4312581671 hasConcept C154945302 @default.
- W4312581671 hasConcept C185592680 @default.
- W4312581671 hasConcept C31972630 @default.
- W4312581671 hasConcept C41008148 @default.
- W4312581671 hasConcept C51399673 @default.
- W4312581671 hasConcept C55493867 @default.
- W4312581671 hasConcept C62649853 @default.
- W4312581671 hasConcept C63479239 @default.
- W4312581671 hasConceptScore W4312581671C104317684 @default.
- W4312581671 hasConceptScore W4312581671C107673813 @default.
- W4312581671 hasConceptScore W4312581671C108583219 @default.
- W4312581671 hasConceptScore W4312581671C119857082 @default.
- W4312581671 hasConceptScore W4312581671C127313418 @default.
- W4312581671 hasConceptScore W4312581671C153180895 @default.
- W4312581671 hasConceptScore W4312581671C154945302 @default.
- W4312581671 hasConceptScore W4312581671C185592680 @default.
- W4312581671 hasConceptScore W4312581671C31972630 @default.
- W4312581671 hasConceptScore W4312581671C41008148 @default.
- W4312581671 hasConceptScore W4312581671C51399673 @default.
- W4312581671 hasConceptScore W4312581671C55493867 @default.
- W4312581671 hasConceptScore W4312581671C62649853 @default.
- W4312581671 hasConceptScore W4312581671C63479239 @default.
- W4312581671 hasFunder F4320334627 @default.
- W4312581671 hasLocation W43125816711 @default.
- W4312581671 hasOpenAccess W4312581671 @default.
- W4312581671 hasPrimaryLocation W43125816711 @default.
- W4312581671 hasRelatedWork W1831365897 @default.
- W4312581671 hasRelatedWork W2035976912 @default.
- W4312581671 hasRelatedWork W2036807459 @default.
- W4312581671 hasRelatedWork W2109974539 @default.
- W4312581671 hasRelatedWork W2125927971 @default.
- W4312581671 hasRelatedWork W2541791370 @default.
- W4312581671 hasRelatedWork W2738084969 @default.
- W4312581671 hasRelatedWork W2771156424 @default.
- W4312581671 hasRelatedWork W4223943233 @default.
- W4312581671 hasRelatedWork W4312200629 @default.
- W4312581671 isParatext "false" @default.
- W4312581671 isRetracted "false" @default.
- W4312581671 workType "article" @default.