Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312582261> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4312582261 abstract "In this modern era, people are working hard to meet their physical needs and non-effective their ability to spend time for themselves which leads to physical stress and mental disorder. Many reports state that heart failure is caused by many diseases that we ignore and chronic diseases as well as the global epidemic of the Coronavirus. Heart failure does not mean that it will stop at any moment but rather that the heart is not working as it should. Heart failure, also known as congestive heart failure, is a condition that develops when your heart does not pump enough blood for your body’s needs. This paper aims to predict if someone is at high risk of being diagnosed as a heart patient using different machine learning methods. We have collected datasets to analyze data and mining using 7 algorithms of machine learning to predict whether the patient suffers from heart failure or not. This paper used a dataset retrieved from kaggle repository, which consists of 12 attributes (Features). This work is implemented using K-Nearest Neighbors (KNN), Naïve Bayes (NB), Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Decision Tree (TD) and Neural Network (NN) algorithms. Results showed that Logistic Regression, Support Vector Machine and Neural Network respectively gave the best result with an accuracy of up to 94.57%." @default.
- W4312582261 created "2023-01-05" @default.
- W4312582261 creator A5038157620 @default.
- W4312582261 creator A5058955167 @default.
- W4312582261 creator A5080069526 @default.
- W4312582261 creator A5085164300 @default.
- W4312582261 creator A5090473876 @default.
- W4312582261 date "2022-07-04" @default.
- W4312582261 modified "2023-10-06" @default.
- W4312582261 title "Comparison of Some Machine Learning Algorithms for Predicting Heart Failure" @default.
- W4312582261 cites W2785813055 @default.
- W4312582261 cites W2789638108 @default.
- W4312582261 cites W2811188240 @default.
- W4312582261 cites W2900794383 @default.
- W4312582261 cites W2921518958 @default.
- W4312582261 cites W2938270449 @default.
- W4312582261 cites W2954507261 @default.
- W4312582261 cites W2963760109 @default.
- W4312582261 cites W2999694851 @default.
- W4312582261 cites W3019886164 @default.
- W4312582261 cites W3135907098 @default.
- W4312582261 cites W3161578956 @default.
- W4312582261 cites W3190188467 @default.
- W4312582261 cites W3204280492 @default.
- W4312582261 cites W4206132771 @default.
- W4312582261 doi "https://doi.org/10.1109/icemis56295.2022.9914325" @default.
- W4312582261 hasPublicationYear "2022" @default.
- W4312582261 type Work @default.
- W4312582261 citedByCount "2" @default.
- W4312582261 countsByYear W43125822612023 @default.
- W4312582261 crossrefType "proceedings-article" @default.
- W4312582261 hasAuthorship W4312582261A5038157620 @default.
- W4312582261 hasAuthorship W4312582261A5058955167 @default.
- W4312582261 hasAuthorship W4312582261A5080069526 @default.
- W4312582261 hasAuthorship W4312582261A5085164300 @default.
- W4312582261 hasAuthorship W4312582261A5090473876 @default.
- W4312582261 hasConcept C11413529 @default.
- W4312582261 hasConcept C119857082 @default.
- W4312582261 hasConcept C12267149 @default.
- W4312582261 hasConcept C126322002 @default.
- W4312582261 hasConcept C151956035 @default.
- W4312582261 hasConcept C154945302 @default.
- W4312582261 hasConcept C169258074 @default.
- W4312582261 hasConcept C2778198053 @default.
- W4312582261 hasConcept C41008148 @default.
- W4312582261 hasConcept C50644808 @default.
- W4312582261 hasConcept C52001869 @default.
- W4312582261 hasConcept C71924100 @default.
- W4312582261 hasConcept C84525736 @default.
- W4312582261 hasConceptScore W4312582261C11413529 @default.
- W4312582261 hasConceptScore W4312582261C119857082 @default.
- W4312582261 hasConceptScore W4312582261C12267149 @default.
- W4312582261 hasConceptScore W4312582261C126322002 @default.
- W4312582261 hasConceptScore W4312582261C151956035 @default.
- W4312582261 hasConceptScore W4312582261C154945302 @default.
- W4312582261 hasConceptScore W4312582261C169258074 @default.
- W4312582261 hasConceptScore W4312582261C2778198053 @default.
- W4312582261 hasConceptScore W4312582261C41008148 @default.
- W4312582261 hasConceptScore W4312582261C50644808 @default.
- W4312582261 hasConceptScore W4312582261C52001869 @default.
- W4312582261 hasConceptScore W4312582261C71924100 @default.
- W4312582261 hasConceptScore W4312582261C84525736 @default.
- W4312582261 hasLocation W43125822611 @default.
- W4312582261 hasOpenAccess W4312582261 @default.
- W4312582261 hasPrimaryLocation W43125822611 @default.
- W4312582261 hasRelatedWork W3013497550 @default.
- W4312582261 hasRelatedWork W3107429030 @default.
- W4312582261 hasRelatedWork W4214951795 @default.
- W4312582261 hasRelatedWork W4281846282 @default.
- W4312582261 hasRelatedWork W4285225238 @default.
- W4312582261 hasRelatedWork W4321636153 @default.
- W4312582261 hasRelatedWork W4377964522 @default.
- W4312582261 hasRelatedWork W4383535405 @default.
- W4312582261 hasRelatedWork W4384345534 @default.
- W4312582261 hasRelatedWork W4387055688 @default.
- W4312582261 isParatext "false" @default.
- W4312582261 isRetracted "false" @default.
- W4312582261 workType "article" @default.