Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312583707> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4312583707 endingPage "588" @default.
- W4312583707 startingPage "571" @default.
- W4312583707 abstract "Large in-stream wood (LW) is a critical component of riparian systems that increases heterogeneity of flow regimes and provides high habitat for salmonids and other fishes. We present four sampling-based methods to estimate two-dimensional LW for a 61-hectare river restoration project on the South Fork McKenzie River near Rainbow, OR (USA). We manually delineated LW area, from unoccupied aircraft systems (UAS) multispectral imagery for 40 randomly selected 51.46 m2 hexagonal plots. Seven auxiliary variables were extracted from the imagery and imagery derivatives to be incorporated in four estimators by summarizing spectral statistics for each plot including Random forest (RF) classification of segmented imagery (Cohen’s kappa = 0.75, balanced accuracy = 0.86). The four estimators were: difference estimator, simple linear regression estimator with one auxiliary variable, general regression estimator with seven auxiliary variables, and simple random sample without replacement. We assessed variance of the estimators and found that the simple random sample without replacement produced the largest estimate for LW area and widest confidence interval (17,283 m2, 95% CI 10,613 - 23,952 m2) while the generalized regression approach resulted in the smallest estimate and narrowest confidence interval (16,593 m2, 95% CI 13,054 - 20,133 m2). These methods facilitate efficient estimates of critical habitat components, that are especially suited to efforts that seek to quantify large amounts of these components through time. When combined with traditional sampling methods, classified imagery acquired via UAS promises to enhance the temporal resolution of the data products associated with restoration efforts while minimizing the necessity for potentially hazardous field work." @default.
- W4312583707 created "2023-01-05" @default.
- W4312583707 creator A5012641727 @default.
- W4312583707 creator A5029681358 @default.
- W4312583707 creator A5048535675 @default.
- W4312583707 creator A5058177488 @default.
- W4312583707 creator A5083140730 @default.
- W4312583707 date "2022-01-01" @default.
- W4312583707 modified "2023-09-26" @default.
- W4312583707 title "Sampling-Based Approaches to Estimating Two-Dimensional Large Wood Area from UAS Imagery" @default.
- W4312583707 cites W191318895 @default.
- W4312583707 cites W1996022982 @default.
- W4312583707 cites W2007434794 @default.
- W4312583707 cites W2009218697 @default.
- W4312583707 cites W2027254180 @default.
- W4312583707 cites W2071046352 @default.
- W4312583707 cites W2103248589 @default.
- W4312583707 cites W2139086914 @default.
- W4312583707 cites W2498260651 @default.
- W4312583707 cites W2810927599 @default.
- W4312583707 cites W2886825647 @default.
- W4312583707 cites W2901789404 @default.
- W4312583707 cites W2911964244 @default.
- W4312583707 cites W2947493708 @default.
- W4312583707 cites W3001525963 @default.
- W4312583707 cites W3008831282 @default.
- W4312583707 cites W3011390873 @default.
- W4312583707 cites W3033028118 @default.
- W4312583707 cites W3081306518 @default.
- W4312583707 cites W4220888567 @default.
- W4312583707 cites W4285592358 @default.
- W4312583707 doi "https://doi.org/10.4236/jgis.2022.146032" @default.
- W4312583707 hasPublicationYear "2022" @default.
- W4312583707 type Work @default.
- W4312583707 citedByCount "0" @default.
- W4312583707 crossrefType "journal-article" @default.
- W4312583707 hasAuthorship W4312583707A5012641727 @default.
- W4312583707 hasAuthorship W4312583707A5029681358 @default.
- W4312583707 hasAuthorship W4312583707A5048535675 @default.
- W4312583707 hasAuthorship W4312583707A5058177488 @default.
- W4312583707 hasAuthorship W4312583707A5083140730 @default.
- W4312583707 hasBestOaLocation W43125837071 @default.
- W4312583707 hasConcept C105795698 @default.
- W4312583707 hasConcept C106131492 @default.
- W4312583707 hasConcept C11731853 @default.
- W4312583707 hasConcept C140779682 @default.
- W4312583707 hasConcept C144024400 @default.
- W4312583707 hasConcept C149923435 @default.
- W4312583707 hasConcept C185429906 @default.
- W4312583707 hasConcept C185933670 @default.
- W4312583707 hasConcept C18903297 @default.
- W4312583707 hasConcept C20353970 @default.
- W4312583707 hasConcept C2908647359 @default.
- W4312583707 hasConcept C31972630 @default.
- W4312583707 hasConcept C33923547 @default.
- W4312583707 hasConcept C41008148 @default.
- W4312583707 hasConcept C44249647 @default.
- W4312583707 hasConcept C48921125 @default.
- W4312583707 hasConcept C86803240 @default.
- W4312583707 hasConceptScore W4312583707C105795698 @default.
- W4312583707 hasConceptScore W4312583707C106131492 @default.
- W4312583707 hasConceptScore W4312583707C11731853 @default.
- W4312583707 hasConceptScore W4312583707C140779682 @default.
- W4312583707 hasConceptScore W4312583707C144024400 @default.
- W4312583707 hasConceptScore W4312583707C149923435 @default.
- W4312583707 hasConceptScore W4312583707C185429906 @default.
- W4312583707 hasConceptScore W4312583707C185933670 @default.
- W4312583707 hasConceptScore W4312583707C18903297 @default.
- W4312583707 hasConceptScore W4312583707C20353970 @default.
- W4312583707 hasConceptScore W4312583707C2908647359 @default.
- W4312583707 hasConceptScore W4312583707C31972630 @default.
- W4312583707 hasConceptScore W4312583707C33923547 @default.
- W4312583707 hasConceptScore W4312583707C41008148 @default.
- W4312583707 hasConceptScore W4312583707C44249647 @default.
- W4312583707 hasConceptScore W4312583707C48921125 @default.
- W4312583707 hasConceptScore W4312583707C86803240 @default.
- W4312583707 hasIssue "06" @default.
- W4312583707 hasLocation W43125837071 @default.
- W4312583707 hasOpenAccess W4312583707 @default.
- W4312583707 hasPrimaryLocation W43125837071 @default.
- W4312583707 hasRelatedWork W1999931535 @default.
- W4312583707 hasRelatedWork W2113850892 @default.
- W4312583707 hasRelatedWork W2246802597 @default.
- W4312583707 hasRelatedWork W2586722537 @default.
- W4312583707 hasRelatedWork W3008542205 @default.
- W4312583707 hasRelatedWork W4230755026 @default.
- W4312583707 hasRelatedWork W4252172446 @default.
- W4312583707 hasRelatedWork W4312447901 @default.
- W4312583707 hasRelatedWork W803217542 @default.
- W4312583707 hasRelatedWork W2627054763 @default.
- W4312583707 hasVolume "14" @default.
- W4312583707 isParatext "false" @default.
- W4312583707 isRetracted "false" @default.
- W4312583707 workType "article" @default.