Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312586883> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4312586883 abstract "Electromyogram (EMG) signals have become more prevalent in recent years for the purpose of hand and finger motion identification. On the other hand, the majority of research have concentrated their attention on the arm and the entire hand, rather than on individual finger (IF) motions, which were thought to be more challenging. EMG-based classifications for hand and finger gestures are being developed using data mining algorithms in this study. Constant circuit arrangement is the basis for these algorithms. Ten individuals in good health were asked to make ten different hand/finger gestures, seven of which were IF movements. Three channels' worth of Electromyogram (EMG) signals was measured, and then each channel's worth of data was broken down into six time-domain (TD) characteristics. Artificial neural networks (ANN), a support vector machine, a random forest (RF) as well as a logistic regression were all used to create a set of 10 distinct gesture-specific classifications. There were a total of 18 qualities to choose from. For example, SVMs achieved mean precision of 0.840; ANNs were 0.840; SVMs were 0.866; SVMs were 0.877; and SVMs were 0.831.Each analysis of deviation and F-tests showed that now the artificial neural network (ANN) had the highest mean accuracy and the least inter-subject variation in efficiency, suggesting that individual variability in EMG data had the least influence on the ANN. We obtained a larger ratio of motions to channels than previous research that were comparable to ours using solely TD characteristics, which suggests that the suggested technique has the potential to increase the system's usability and minimize the amount of computing work required." @default.
- W4312586883 created "2023-01-05" @default.
- W4312586883 creator A5018116033 @default.
- W4312586883 creator A5045471849 @default.
- W4312586883 creator A5047457883 @default.
- W4312586883 creator A5058165562 @default.
- W4312586883 creator A5072295287 @default.
- W4312586883 date "2022-07-15" @default.
- W4312586883 modified "2023-10-16" @default.
- W4312586883 title "An Artificial Neural Network Classifier for palm Motion categorization based on EMG signal" @default.
- W4312586883 cites W2891283527 @default.
- W4312586883 cites W2901866627 @default.
- W4312586883 cites W2910093073 @default.
- W4312586883 cites W2922138935 @default.
- W4312586883 cites W2981877040 @default.
- W4312586883 cites W2991304817 @default.
- W4312586883 cites W2993773149 @default.
- W4312586883 cites W3153084127 @default.
- W4312586883 cites W3177240742 @default.
- W4312586883 cites W4224064350 @default.
- W4312586883 cites W4224069960 @default.
- W4312586883 doi "https://doi.org/10.1109/icses55317.2022.9914097" @default.
- W4312586883 hasPublicationYear "2022" @default.
- W4312586883 type Work @default.
- W4312586883 citedByCount "4" @default.
- W4312586883 countsByYear W43125868832023 @default.
- W4312586883 crossrefType "proceedings-article" @default.
- W4312586883 hasAuthorship W4312586883A5018116033 @default.
- W4312586883 hasAuthorship W4312586883A5045471849 @default.
- W4312586883 hasAuthorship W4312586883A5047457883 @default.
- W4312586883 hasAuthorship W4312586883A5058165562 @default.
- W4312586883 hasAuthorship W4312586883A5072295287 @default.
- W4312586883 hasConcept C104114177 @default.
- W4312586883 hasConcept C119857082 @default.
- W4312586883 hasConcept C12267149 @default.
- W4312586883 hasConcept C153180895 @default.
- W4312586883 hasConcept C154945302 @default.
- W4312586883 hasConcept C169258074 @default.
- W4312586883 hasConcept C199360897 @default.
- W4312586883 hasConcept C207347870 @default.
- W4312586883 hasConcept C2779843651 @default.
- W4312586883 hasConcept C28490314 @default.
- W4312586883 hasConcept C41008148 @default.
- W4312586883 hasConcept C50644808 @default.
- W4312586883 hasConcept C94124525 @default.
- W4312586883 hasConcept C95623464 @default.
- W4312586883 hasConceptScore W4312586883C104114177 @default.
- W4312586883 hasConceptScore W4312586883C119857082 @default.
- W4312586883 hasConceptScore W4312586883C12267149 @default.
- W4312586883 hasConceptScore W4312586883C153180895 @default.
- W4312586883 hasConceptScore W4312586883C154945302 @default.
- W4312586883 hasConceptScore W4312586883C169258074 @default.
- W4312586883 hasConceptScore W4312586883C199360897 @default.
- W4312586883 hasConceptScore W4312586883C207347870 @default.
- W4312586883 hasConceptScore W4312586883C2779843651 @default.
- W4312586883 hasConceptScore W4312586883C28490314 @default.
- W4312586883 hasConceptScore W4312586883C41008148 @default.
- W4312586883 hasConceptScore W4312586883C50644808 @default.
- W4312586883 hasConceptScore W4312586883C94124525 @default.
- W4312586883 hasConceptScore W4312586883C95623464 @default.
- W4312586883 hasLocation W43125868831 @default.
- W4312586883 hasOpenAccess W4312586883 @default.
- W4312586883 hasPrimaryLocation W43125868831 @default.
- W4312586883 hasRelatedWork W2136184105 @default.
- W4312586883 hasRelatedWork W2985924212 @default.
- W4312586883 hasRelatedWork W3013515612 @default.
- W4312586883 hasRelatedWork W3195168932 @default.
- W4312586883 hasRelatedWork W3195610867 @default.
- W4312586883 hasRelatedWork W4321636153 @default.
- W4312586883 hasRelatedWork W4377964522 @default.
- W4312586883 hasRelatedWork W4385481849 @default.
- W4312586883 hasRelatedWork W2187500075 @default.
- W4312586883 hasRelatedWork W2345184372 @default.
- W4312586883 isParatext "false" @default.
- W4312586883 isRetracted "false" @default.
- W4312586883 workType "article" @default.